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Abstract

In today’s digital age, private communication is anchored in robust encryption techniques. As the
horizon of quantum computing draws nearer, current encryption methods may soon become vul-
nerable to quantum attacks, pointing to the need for post-quantum cryptography. The CSIDH
encryption scheme [1], grounded in isogeny-based cryptography, emerges as a compelling candi-
date for such post-quantum cryptography. Understanding CSIDH requires a solid grasp of finite
fields, number fields, and particularly elliptic curves. This thesis strives to break down these
topics to make the innovative CSIDH approach more accessible, encouraging further exploration
in the field of isogeny-based cryptography to ensure digital privacy for years to come.
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Introduction

In the world of digital communication, the robustness of encryption algorithms is of great concern.
Weak encryption algorithms pose a risk of sensitive information leakage, as messages could be
decoded without our consent. The digital era has made information rapidly accessible across
great distances. Yet, this convenience comes with a downside: the possibility of unauthorised
interception by eavesdroppers. Encrypting our messages is a very reliable measure to prevent
such breaches. However, the advent of quantum computing challenges our existing encryption
methods, revealing susceptibilities to quantum attacks, highlighting the necessity for encryption
methods that are resistant to such threats. CSIDH [1], an encryption scheme founded on isogeny-
based cryptography, is believed to be a promising example of such a quantum-resistant encryption
scheme. The method relies on mathematical theories and concepts such as finite fields, number
fields, and elliptic curves.

Organised into five chapters (see Figure 1), this thesis lays out the groundwork of algebraic
structures relevant to CSIDH, aiming to provide an explanation of the CSIDH algorithm. As a
result, we hope to make the CSIDH algorithm more accessible in order to encourage further re-
search in the area of isogeny-based cryptography, promoting the privacy of digital communication
in the era of quantum computing.

Chapter 1 introduces the concept of finite fields, as well as how to construct them. The
subsequent chapter is on number fields, number rings, and ideals, an important concept for un-
derstanding the CSIDH algorithm. Chapter 3 focuses on elliptic curves, detailing their properties
and establishing a basis for isogeny-based cryptography. Elaborating on this theory, Chapter
4 explores isogenies, isomorphisms, and endomorphisms of elliptic curves. This chapter further
explores how ideals can act on elliptic curves, culminating in the introduction of isogeny graphs,
an illustrative concept that helps with visualising isogeny-based cryptography.

The final chapter ties together the explored concepts, concentrating on their applications in
encryption schemes. It begins with an overview of the Diffie-Hellman key exchange, describing
how two parties can reach a shared secret. Subsequently, it presents the CSIDH encryption
scheme, using the theory from the previous chapters. Lastly, we discuss a variant of the CSIDH
scheme, providing proofs and a way to break this variant if one can break CSIDH.

To further illustrate the inner workings of the CSIDH encryption scheme, we have im-
plemented a generic, unoptimised version of the algorithm using SageMath [2]. The com-
puter code for this implementation is accessible in Appendix A and on https://github.com/
jorisperrenet/MasterThesis.

An alternative strategy for reading this thesis might be to begin with Section 5.2, which ex-
plains the CSIDH encryption scheme. By starting here, readers can grasp the ultimate objective
and the requirements for achieving it. They can then decide what sections and chapters to read
to supplement their existing knowledge in order to understand the algorithm.
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Figure 1: The conceptual hierarchy of sections within this thesis is depicted as a series of rect-
angles, where a rectangle positioned above another indicates that the understanding of concepts
introduced in the upper rectangle necessitates knowledge from the sections outlined in the lower
rectangle.
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Chapter 0

Preliminaries

This chapter aims to provide some of the background knowledge that the other chapters of this
thesis rely on. Before we move on to a couple of explicit definitions, we first state some topics
that we regard as prerequisites to this thesis. If the reader is not familiar with any of these
subjects, they are referred to [3], [4], or [5] (depending on the subject). We also note that online
resources are readily available for most of these prerequisites. In particular, we assume that the
reader is familiar with (and has a thorough understanding of) the following.

• The (set of all) integers Z, the rationals Q, and the reals R.

• Prime numbers, divisors, prime factorisation, greatest common divisors, and the Euler
totient function.

• Sets and subsets, as well as unions, intersections, differences, and the Cartesian product of
sets together with the corresponding notation.

• The notation surrounding maps, the definition of one-to-one and bijective maps, the compo-
sition of maps, and the definitions of homomorphisms, isomorphisms, and endomorphisms.

• Addition and multiplication of polynomials, as well as knowing what coefficients and terms
of a polynomial are.

• (Equivalence) relations, equivalence classes and the notation of basic propositional logic.

• Summations, linear combinations, (the dimension and rank of) vector spaces, and (the
trace and determinant of) matrices.

• The basics of group actions, i.e., when is something a group action.

0.1 Groups and Rings
Definition 0.1. A (binary) operation on a set G is a map G×G→ G.

Definition 0.2. A non-empty set G with a binary operation on G, which we denote here as
◦ : G×G→ G, is called a group if the following three requirements are met.

• (Associativity) For all a, b, c ∈ G, one has a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• (Identity element) There is an e ∈ G such that, for all a ∈ G, we have that e ◦a = a ◦ e = a.

• (Inverse element) For every a ∈ G there exists an element a−1 ∈ G such that a ◦ a−1 =
a−1 ◦ a = e.
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8 CHAPTER 0. PRELIMINARIES

If G is a group there is exactly one identity element in G, and every element of G has exactly
one inverse [3, Theorem 2.4]. Also, the group G is called commutative or abelian if it satisfies
the following additional requirement.

• (Commutativity) For all a, b ∈ G we have that a ◦ b = b ◦ a.

A non-empty subset H of a group G is called closed under the operation ◦ if for any pair
(a, b) ∈ H × H we have that a ◦ b ∈ H (where ◦ is the operation of the group G), and for any
a ∈ H we have that a−1 ∈ H (where a−1 is the inverse of a in G). In that case, we call H a
subgroup of G as we can restrict ◦ to get a map ◦ : H ×H → H, yielding an operation on H.

A finite group is a group with only finitely many elements. The number of elements of a finite
group is called its order.

Definition 0.3. A group G under some operation is said to be finitely generated if there is some
finite subset of G such that every element of G can be written (under the group operation and
taking inverses) as a combination of finitely many elements of the subset.

Definition 0.4. A non-empty set R equipped with two binary operations, which we call addition
and multiplication and denote by + : R×R→ R and · : R×R→ R respectively, is called a ring
if the following requirements are met.

• The set R is an abelian group under the + operation (with the additive identity element
denoted by 0).

• The set R is associative under multiplication and has a multiplicative identity element,
which we denote by 1 (also, we require that 0 6= 1 in this thesis).

• Multiplication in R is distributive over addition, i.e., for every a, b, c ∈ R we require that
a · (b+ c) = (a · b) + (a · c) and that (b+ c) · a = (b · a) + (c · a).

A ring R is called a commutative ring if multiplication in R is commutative.
A subset S of the ring R is called a subring of R if S contains the multiplicative identity of R

and S is closed (Definition 0.2) under the addition and multiplication operation (of the ring R).
Just like with a group, a finite ring is a ring with only finitely many elements. The number

of elements of a finite ring is called its order.

0.2 Modulo Arithmetic
Let nZ = {nx : x ∈ Z} be a set under the usual addition and multiplication operations.

Definition 0.5. Let a, b ∈ Z with b > 0 be arbitrary. Then, there exist unique [3, Theorem 1.3]
integers q and r called the quotient and remainder, respectively, of the division of a by b such
that a = qb+ r and 0 ≤ r < b.

Fix n to be a positive integer, in order to define the ring Z/nZ we let a and b denote positive
integers. Define the relation ∼ between a and b such that a ∼ b ⇐⇒ a and b have the
same remainder after division by n. This relation is an equivalence relation, and we call its
equivalence classes residue classes modulo n. Since there are n different remainders, there are
exactly n different residue classes modulo n. We can now define Z/nZ as the set containing
the n residue classes modulo n. For any a ∈ Z we let (a mod n) denote the residue class that
contains a. If a and b belong to the same residue class, i.e., a ∼ b, we say that a and b are
congruent modulo n, and denote this by a ≡ b (mod n). We define the + operator on Z/nZ
to be the map sending ((a mod n), (b mod n)) → ((a + b) mod n), where the + on the right-
hand side is the ordinary addition taken in Z. Similarly, we let the · operator on Z/nZ satisfy
(a mod n) · (b mod n) = ((a · b) mod n). Under these two operations Z/nZ forms a commutative
ring.



Chapter 1

Finite Fields

In many mathematical textbooks, the theory of finite fields is considered to be a prerequisite.
This causes most books to be unsuitable for learning from top to bottom to the ones that do not
grasp the full scope of finite fields. With that in mind, this chapter aims to provide a thorough
explanation of the theory on finite fields, as we will use it in later parts of this thesis.

Commencing with fundamental principles that define a finite field, this chapter progressively
reveals the existence and creation of finite fields. Although this chapter introduces the subject
quite extensively, it is still focused on providing background for the rest of the thesis. Therefore,
not all the existing theory on finite fields is stated. If the reader is interested in a more complete
theory, they are encouraged to consult [6], [7], and [8].

1.1 Fields
Definition 1.1. A non-empty set F equipped with two binary operations, which we call addition
and multiplication and denote by + : F ×F → F and · : F ×F → F respectively, is called a field
if the following requirements are met.

• The set F is an abelian group under the + operation (with the additive identity element
denoted by 0).

• The set F \ {0} is an abelian group under the · operation (we usually denote this group as
F ∗ and denote its multiplicative identity element as 1).

• Multiplication in F is distributive over addition, i.e., for every a, b, c ∈ F we require that
a · (b+ c) = (a · b) + (a · c) and that (b+ c) · a = (b · a) + (c · a).

A subset K of the field F is called a subfield of F if K is a field with respect to the addition and
multiplication operation (of the field F ). If K is a subfield of F , then F is called an extension
(field) of K.

Remark. Equivalently, a field F is a commutative ring (Definition 0.4) where 0 6= 1 and all
elements of F \ {0} are invertible (i.e., have an inverse element in F \ {0}) under multiplication.
Remark. Similar to groups and rings, a field is called a finite field if it has finitely many elements.
The number of elements of a finite field F is called its order.

With respect to our usual addition and multiplication operation, it can be shown that Q,
R, and Z/7Z are fields.
Additionally, we can see that Z is not a field as Z\{0} does not contain an inverse element
for any numbers except −1 and 1. To motivate this, note that Z ⊂ Q. Now, if Z is a field
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10 CHAPTER 1. FINITE FIELDS

then it will be a subfield of Q as Q is a field with the same operations. As Q \ {0} is a
group with respect to multiplication (since Q is a field) we find that 2 ∈ Q has a unique
inverse. Since 1 is the multiplicative identity of Q we know that the unique inverse of 2
must equal 1/2 ∈ Q. Now, 1/2 /∈ Z, contradicting the fact that Z contains an inverse
element for 2 ∈ Z. Therefore, Z cannot be a subfield of Q, and in turn Z cannot be a
field.
Likewise, (Z/12Z)∗ does not contain an inverse element for the residue class (3 mod 12)
as we can not find an x ∈ Z such that 3x ≡ 1 (mod 12). We can conclude that Z/12Z is
not a (finite) field.

Theorem 1.2. Let n be a positive integer. Then Z/nZ is a finite field if and only if n is prime.
Proof. First, let n be a positive integer, but not a prime. To prove necessity, we assume that
Z/nZ is a finite field and prove that it leads to a contradiction. Since n is not prime, there
exists an integer d such that 1 < gcd(d, n) < n. For any such d, let a ∈ (Z/nZ)∗ denote the
multiplicative inverse of (d mod n), note that this inverse exists by our assumption that Z/nZ
is a finite field. Since a is the inverse of (d mod n) we know that (d mod n) · a = (1 mod n). Let
a′ ∈ Z be an element of the residue class of a, we find that there exists some integer b such that
d · a′ − b · n = 1. We know that gcd(d, n) divides both d and n, thus it divides the left-hand
side of our equation, implying that it must also divide 1. Since gcd(d, n) > 1 we know that the
equation cannot hold, resulting in a contradiction. Therefore, Z/nZ can only be a finite field if
n is prime. A proof of sufficiency can be found in [9, Theorem 3] and in [10, Theorem 7.5].

In our previous example we have stated that Z/7Z is a field. In fact, this is a direct
consequence of Theorem 1.2. In this example, we will show that Z/7Z is a field using
brute force calculations.
First, let 0 through 6 denote the elements of Z/7Z (where each number is used to denote
the residue class that contains it). We will get the following addition and multiplication
tables concerning these elements:

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

For the abelian group (Definition 0.2) with respect to addition, we verify the following.
– Identity element: It is clear that 0 is our identity element, and that 0+a = a+0 = a

holds for all a ∈ Z/7Z.

– Inverse element: The addition table has one, and exactly one, 0 on each of its rows
and columns. Upon looking in the row of some a ∈ Z/7Z, there will be an element
b ∈ (Z/7Z) such that a+b = 0 (the element b can be found in the column containing
the 0).

– Commutativity: The addition table is symmetric around its main diagonal, we must
thus have that for all a, b ∈ Z/7Z, the equality a+ b = b+ a holds.

– Associativity: Let a, b, c ∈ Z/7Z, then (a+ b) + c = a+ (b+ c) holds. This can be
seen by verifying all possible a, b, and c.



1.2. POLYNOMIAL RINGS 11

For the abelian group (Z/7Z) \ {0} with respect to multiplication:

– Identity element: It is clear that 1 is our identity element, and that 1 · a = a · 1 = a
holds for all a ∈ Z/7Z.

– Inverse element: The inverse of an element can be found by first finding the 1 in its
row and subsequently looking at the column that contains the 1.

– Commutativity: The multiplication table is likewise symmetric around its main
diagonal, commutativity follows.

– Associativity: Let a, b, c ∈ (Z/7Z) \ {0}, then (a · b) · c = a · (b · c) holds. This can
be seen by verifying all possible a, b, and c.

Finally, the distributive property of Z/7Z can be verified by checking all possibilities. We
now know that Z/7Z is a (finite) field due to Definition 1.1.

As we shall see in Theorem 1.9, it turns out that there only exist finite fields with pm elements,
for any prime p and positive integer m. The finite field of that order is denoted as Fpm . Moreover,
any two fields of order pm are isomorphic. We already know that for m = 1 the set Fp := Z/pZ
is a finite field due to Theorem 1.2, however constructing finite fields for integers m > 1 requires
a little more effort.

1.2 Polynomial Rings
For this entire section, we let p denote a prime number and R a commutative ring (Definition
0.4). Note that any field is also a commutative ring.

Definition 1.3. We define the polynomial ring R[x] for any commutative ring R as the set of
all polynomials in x (with finitely many terms) with coefficients in R (note that x is a variable
and its value does not need to be in R). Let n be a non-negative integer, using our definition of
R[x] we say that the set{

n∑
i=0

aix
i, with a0, a1, . . . , an−1 ∈ R and an ∈ R \ {0}

}
(1.1)

contains all polynomials f ∈ R[x] of degree n. Generally, the degree of a polynomial f ∈ R[x] is
denoted as deg(f). Furthermore, we define the degree of the zero polynomial, i.e., the polynomial
0 ∈ R[x], to be −∞∗. Building on equation (1.1), we call an the lead coefficient of a polynomial
in any such set. A polynomial is called monic if its lead coefficient equals 1.

Equivalently, we can define R[x] as the union of all sets from equation (1.1) for arbitrary
non-negative integers n together with the zero polynomial.

Remark. If f is a polynomial in a polynomial ring R[x], then we use the notation f and f(x)
interchangeably in this thesis to denote the polynomial.

Multiplication and addition (denoted by · and +, respectively) in this polynomial ring work
as expected.

Define two polynomials f(x) = 3x8 + 6 ∈ F7[x] and g(x) = x2 + 2x + 1 ∈ F7[x]. Using
Definition 1.3 we find that deg(f) = 8, deg(g) = 2, f has lead coefficient 3, and g is monic.

∗This definition is not used throughout all literature, sometimes the degree of the zero polynomial is defined
to be non-existent.
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Also, f(x)+g(x) = 3x8+x2+2x ∈ F7[x] and f(x)·g(x) = 3x10+6x9+3x8+6x2+5x+6 ∈
F7[x].

Definition 1.4. Let f ∈ R[x] be an arbitrary polynomial. For all polynomials g ∈ R[x]\{0} (i.e.,
excluding the zero polynomial) there exist unique [11, Theorem 3.16] polynomials q, r ∈ R[x]
such that deg(r) < deg(g) and f(x) = q(x)g(x)+r(x). These polynomials are called the quotient
and remainder, respectively, of the division of f(x) by g(x) (this division is sometimes denoted
as f(x)/g(x)).

In this example, we determine the quotient and the remainder of f(x)/g(x) using long
division where f(x) = 9x5 + 3x4 + 5x3 + 6x2 + 8x+ 1 and g(x) = 2x3 + x2 + 7 are both
elements of F11[x]. For the first step, we note that 10 · (2x3 + x2 + 7) = 9x3 + 10x2 + 4.
Remember that all coefficients of these polynomials are in F11.†

2x3 + x2 + 7/9x5+ 3x4+5x3+6x2+8x+1\10x2 + 2x+ 7

9x5+10x4 +4x2

4x4+5x3+2x2+8x+1

4x4+2x3 +3x

3x3+2x2+5x+1

3x3+7x2 +5

6x2+5x+7

Therefore, we can write f(x) = q(x)g(x) + r(x) with q(x) = 10x2 + 2x + 7 and r(x) =
6x2+5x+7. Note that deg(r) < deg(g) indeed holds. If deg(r) ≥ deg(g), we should have
continued the long division by removing additional factors of g(x) from the leftover r(x)
until deg(r) < deg(g) is satisfied.

†This is the Dutch notational variant of long division or “staartdeling”. The denominator is written
down left of the /, the numerator comes next and after the \ the quotient is denoted element by element.
The denominator is multiplied by the first element of the quotient (which one needs to figure out and
write down), this is then subtracted from the numerator and the result is written below a long horizontal
line. Now the result becomes the new numerator and the process is repeated. At the end you can find
the remainder of the division at the bottom and the quotient at the top right.

Definition 1.5. A non-constant (i.e., of degree at least 1) polynomial f ∈ R[x] is called irre-
ducible if there does not exist a polynomial g ∈ R[x] such that 0 < deg(g) < deg(f) and the
remainder of f(x)/g(x) is the zero polynomial.

Now that we have provided some definitions regarding polynomial rings R[x] for any commuta-
tive ring R (which will be needed in upcoming chapters), we start by stating theorems concerning
only Fp[x] (this does not mean that some theorems do not generalise to other polynomial rings).

Similar to how non-zero integers can be uniquely factored into products of prime numbers and
−1, non-zero polynomials f ∈ Fp[x] can be uniquely factored into products of monic irreducible
polynomials and a constant in F∗

p [12, Theorem 1.2.17].

The polynomial f(x) = 2x2 + x+ 1 in F3[x] is irreducible. To illustrate this, we write it
in the form q(x)g(x) + r(x) where g(x) iterates through all possible polynomials in F3[x]
with 0 < deg(g) < deg(f):

(2x+ 1)(x) + 1 (x+ 2)(2x) + 1

(2x+ 2)(x+ 1) + 2 (x)(2x+ 1) + 1
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(2x)(x+ 2) + 1 (x+ 1)(2x+ 2) + 2.

No remainder equals the zero polynomial, f(x) is thus irreducible.∗

The polynomial f(x) = x3 + x+ 1 is not irreducible in F3[x]. It can be expressed as the
product of two polynomials p(x) = x+ 2 and q(x) = x2 + x+ 2 of non-zero degree. The
remainder of dividing f(x) by either p(x) or q(x) will result in the zero polynomial.

In F19[x], the polynomial f(x) = 4x11 + 5x3 + 13x2 + 7x + 15 is not irreducible. The
unique factorisation (up to permutation of the factors) of f(x) equals

(4)(x+ 9)(x2 + 10x+ 3)(x3 + 15x2 + 17)(x5 + 4x4 + 18x3 + 9x2 + 10x+ 6)

and is thus the product of monic irreducible polynomials in F19[x] multiplied by the
constant 4 ∈ F∗

19. Or, as you can also see it, the polynomial 4 ∈ F19[x] of degree 0.
∗A faster way to check irreducibility of a polynomial f(x) ∈ Fp[x] with deg(f) ≥ 2 is to check for

roots. That is, if f(x) is irreducible then there does not exist an a ∈ Fp such that f(a) = 0. The converse
only holds if f(x) is a polynomial of degree 2 or 3.

Definition 1.6. Let f, g ∈ Fp[x] be arbitrary and fix h ∈ Fp[x] \ {0}. We say that f and g
are congruent modulo h if the remainder of f(x)/h(x) equals the remainder of g(x)/h(x). This
congruence is denoted as g ≡ f (mod h) and forms an equivalence relation. We denote the
equivalence classes of this relation by (f mod h). The set of all these equivalence classes is
denoted by Fp[x]/(h).

Following the notation of the definition, one can define the + operation on Fp[x]/(h) by
the map ((f mod h), (g mod h)) → ((f + g) mod h), where f + g is evaluated using polynomial
addition. Similarly, one can let the · operation satisfy (f mod h) · (g mod h) = ((f · g) mod h).
Equipped with the + and · operator, Fp[x]/(h) forms a commutative ring [12, Theorem 1.3.8].

Let f(x) = 9x5 +3x4 +5x3 +6x2 +8x+1 and g(x) = 2x3 +x2 +7 be defined over F11[x]
(note that these are the same polynomials as in the long division example). We can write
f(x) = q(x)g(x) + r(x) with q(x) = 10x2 + 2x+ 7 and r(x) = 6x2 + 5x+ 7.
Furthermore,

r(x) + g(x) ≡ 2x3 + 7x2 + 5x+ 3 ≡ 6x2 + 5x+ 7 ≡ r(x) (mod g(x)).

Likewise, each intermediate result in the previous long division example is contained in
(r mod g) as in the process of the long division we only subtracted multiples of g from
the original polynomial f .

1.3 Finite Fields of pm Elements
Combining our theory on fields and polynomial rings, we are able to construct finite fields of pm
elements, where p is a prime number and m is a positive integer.

Theorem 1.7. Fix p to be a prime number and let g ∈ Fp[x] be an irreducible polynomial of
degree m. Following the notation from Definition 1.6, we find that Fp[x]/(g) forms a finite field
of order pm.

Proof. A proof can be found in [10, Theorem 7.9] or in [12, Theorems 1.3.13, 1.3.15].
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Theorem 1.8. There exists at least one irreducible polynomial g ∈ Fp[x] of degree m for every
integer m ≥ 1 and every prime p.

Proof. For a proof, the reader is referred to [12, Theorem 2.6.6] or [6, Lemma 1.4].

Theorem 1.9. Every finite field F is isomorphic to a finite field Fp[x]/(g) constructed by an
irreducible polynomial g ∈ Fp[x]. Moreover, for every prime p and every integer m ≥ 1 there
exists exactly one finite field with pm elements up to isomorphism, meaning that one can always
find an isomorphism between two finite fields of pm elements. Finite fields with an order that
can not be written as the power of a prime, i.e., in the form pm, do not exist.

Proof. Proofs of this theorem can be found in [6, Section 1.1 up to Theorem 1.2], [10, Theo-
rems 7.16, 7.18], and [12, Theorems 2.6.2, 2.8.9].

Theorem 1.10. Under multiplication F∗
pm forms a cyclic group, i.e., there exists an element

α ∈ F∗
pm such that F∗

pm = {1, α, . . . , αpm−2}. Such an element is called a primitive element†,
and there are exactly φ(pm − 1) > 0 distinct primitive elements in F∗

pm where φ denotes Euler’s
totient function.

Proof. A proof that F∗
pm is cyclic and generated by primitive elements is contained in [6, The-

orem 1.3]. For the number of distinct primitive elements, the reader is referred to [10, Theo-
rem 7.13].

Also, under addition Fpm is isomorphic to the vector space (Fp)
m, meaning that we can

represent every polynomial g ∈ Fp[x]/(f) (where f is an irreducible polynomial in Fp[x] of
degree m) as a vector. For example, g(x) = (x3+2x+1 mod f) ∈ F3[x]/(f) with f = x4+x+2
can be represented as 1021, where each term (from highest to lowest degree) has an entry equal
to their coefficient in g(x).

We would like to illustrate some properties of F8 by highlighting them in the following
example.
We take the irreducible polynomial f(x) := x3 + x2 + 1 ∈ F2[x] and write down the
elements of F2[x]/(f) (note that by Theorem 1.7 this is a finite field of order 8), to get

(0 mod f), (1 mod f), (x mod f), (x+ 1 mod f), (x2 mod f),

(x2 + 1 mod f), (x2 + x mod f), and (x2 + x+ 1 mod f).

In vector notation, these can be denoted by 000, 001, 010, 011, 100, 101, 110, and 111, re-
spectively. Let s = (x mod f), and view 0 and 1 as (0 mod f) and (1 mod f), respectively.
We find that F2[x]/(f) can be written as {0, 1, s, s+ 1, s2, s2 + 1, s2 + s, s2 + s+ 1}.
Let α ∈ F2[x]/(f) denote a root of f , implying that we must have α3 + α2 + 1 = 0. To
check whether some choice for α is a root of f , we need to check whether α3 +α2 +1 = 0
holds, given that s3 + s2 + 1 = 0.
For example, in order to check whether α = s+ 1 is a root, we evaluate

(s+ 1)3 + (s+ 1)2 + 1 = s3 + s+ 1 6= 0,

implying that s+ 1 is not a root of f . However, if we take α = s2 + s+ 1, we get

(s2 + s+ 1)3 + (s2 + s+ 1)2 + 1 = (s3 + s2 + 1)(s3 + s+ 1) = 0.

Implying that s2 + s+ 1 is a root of f , and thus presents a valid choice for α. Similarly,
s and s2 are also roots of f .

†It is said that a primitive element of Fpm is a generator of F∗
pm . Conversely, each generator of F∗

pm is called
a primitive element of Fpm .
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For the rest of this example we take α := s ∼= 010. Keeping in mind that coefficients of
the polynomials are in F2, we have

0 = = 0 ∼= 000,
α0 = = 1 ∼= 001,
α1 = = α ∼= 010,
α2 = = α2 ∼= 100,
α3 = = α2 + 1 ∼= 101,
α4 = α · α3 = α(α2 + 1) = α3 + α = α2 + α+ 1 ∼= 111,
α5 = α · α4 = α(α2 + α+ 1) = α2 + 1 + α2 + α = α+ 1 ∼= 011,
α6 = α · α5 = α(α+ 1) = α2 + α ∼= 110,
α7 = α · α6 = α(α2 + α) = α2 + 1 + α2 = 1 ∼= 001.

It can also be seen that F∗
8
∼= (F2)

3\{000} is indeed cyclic as α7 = α0 ∼= 001. Moreover, α
is a primitive element of F2[x]/(f) as it generates all of F∗

8. Using vector notation (and the
equations above) addition and multiplication can be easily done within F2[x]/(x

3+x2+1).
E.g., 101 + 011 = 110 (similar to a bitwise XOR operator since coefficients are in F2).
And 101 · 011 ∼= α3 · α5 = α8 = α1 ∼= 010, using the useful cyclic property of F∗

8.

We will also illustrate similar properties of F9. Define f(x) = x2 + x + 2 ∈ F3[x]. Since
f is irreducible and of degree 2 we know that F3[x]/(f) is a finite field of order 9. The
elements of F3[x]/(f) are

(0 mod f), (1 mod f), (2 mod f), (x mod f), (x+ 1 mod f),

(x+ 2 mod f), (2x mod f), (2x+ 1 mod f), and (2x+ 2 mod f).

In vector notation, these can be denoted by 00, 01, 02, 10, 11, 12, 20, 21, and 22, respec-
tively.
We can already answer questions regarding addition in F9, such as 02 + 11 = 10, which
can also be expressed as (2 mod f)+ (x+1 mod f) = (x mod f). Similarly, 20+22 = 12,
representing (2x mod f) + (2x + 2 mod f) = (x + 2 mod f). Things get more difficult if
we start looking at multiplication. For example, to calculate 10 · 21 we would have to
find (x mod f) · (2x+1 mod f) = (2x2 +x− 2f mod f) = (2x+2 mod f). Implying that
10 · 21 = 22. This calculation is tedious (and becomes increasingly more tedious in larger
finite fields), so we look for a simpler method.
To this end, when necessary, view 0, 1, and 2 as (0 mod f), (1 mod f), and (2 mod f),
respectively, and let α ∈ F3[x]/(f) be a root of f , implying that α2 + α + 2 = 0. In this
example we take α := (x mod f) ∼= 10, as one can verify that this is indeed a root of f .
Assuming that α is a primitive element, we know that F∗

9 forms a cyclic group generated
by powers of α.

α0 = = 1 ∼= 01,
α1 = = α ∼= 10,
α2 = = 2α+ 1 ∼= 21,
α3 = α · α2 = α(2α+ 1) = 2α2 + α = 2α+ 2 ∼= 22,
α4 = α · α3 = α(2α+ 2) = 2α2 + 2α = 2 ∼= 02,
α5 = α · α4 = 2α ∼= 20,
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α6 = α · α5 = 2α2 = α+ 2 ∼= 12,
α7 = α · α6 = α(α+ 2) = α2 + 2α = α+ 1 ∼= 11,
α8 = α · α7 = α(α+ 1) = α2 + α = 1 ∼= 01.

If we want to calculate (x mod f) · (2x + 1 mod f) at this point we can perform the
calculation (x mod f) · (2x + 1 mod f) ∼= 10 · 21 ∼= α · α2 = α3 ∼= 22 ∼= (2x + 2 mod f)
instead.
Now we choose to define F9 by taking the irreducible polynomial g(x) = x2 + 1 ∈ F3[x].
We expect that the finite field F3[x]/(g) has exactly the same properties as our previous
finite field F3[x]/(f) as we know that both fields are isomorphic due to Theorem 1.9.
Let α := (x mod g) ∼= 10, then α is a root of g, giving α2 + 1 = 0. This choice of α is not
a primitive element of F∗

9 since we have (α + 2)2 = α2 + α + 1 = α, meaning that α is a
square in F∗

9. A different way to see that α is not a primitive element arises when writing
out the powers of α as before, finding that some elements of F∗

9 are missing.
Instead, we let β := α+ 1 = (x+ 1 mod g) ∼= 11 generate F∗

9, as, contrary to α, this is a
primitive element of F∗

9. Note that β is not a root of g, thus we do not have β2 + 1 = 0,
however, we still have α2+1 = 0, as α is a root of g. We defined β as α+1, thus we have
α = β − 1, substituting this into α2 + 1 = 0 gives the minimal polynomial for β, which
equals β2 − 2β + 2 = 0. Writing out powers of β gives:

β0 = = 1 ∼= 01,
β1 = = α+ 1 ∼= 11,
β2 = (α+ 1) · β = α2 + 2α+ 1 = 2α ∼= 20,
β3 = (α+ 1) · β2 = 2α2 + 2α = 2α+ 1 ∼= 21,
β4 = (α+ 1) · β3 = 2α2 + 1 = 2 ∼= 02,
β5 = (α+ 1) · β4 = 2α+ 2 ∼= 22,
β6 = (α+ 1) · β5 = 2α2 + α+ 2 = α ∼= 10,
β7 = (α+ 1) · β6 = α2 + α = α+ 2 ∼= 12,
β8 = (α+ 1) · β7 = α2 + 2 = 1 ∼= 01.

It may seem that F3[x]/(g) gives rise to a different multiplication table as F3[x]/(f). For
example, evaluating (x mod g) · (2x+ 1 mod g) in F3[x]/(g) gives

(x mod g) · (2x+ 1 mod g) ∼= 10 · 21 ∼= β6 · β3 = β9 = β ∼= 11 ∼= (x+ 1 mod g).

However, we know from Theorem 1.9 that these finite fields must be isomorphic. To
illustrate that this is indeed true the two tables below are multiplication tables over
F3[x]/(f) and F3[x]/(g), respectively. Notice that the arrangement of colours in both
tables is identical, despite some colours representing different elements in each table.
This observation confirms that these two finite fields are isomorphic, differing only in
the permutation of their elements.
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· 01 02 10 11 12 20 21 22
01 01 02 10 11 12 20 21 22
02 02 01 20 22 21 10 12 11
10 10 20 21 01 11 12 22 02
11 11 22 01 12 20 02 10 21
12 12 21 11 20 02 22 01 10
20 20 10 12 02 22 21 11 01
21 21 12 22 10 01 11 02 20
22 22 11 02 21 10 01 20 12

· 01 02 11 12 10 22 20 21
01 01 02 11 12 10 22 20 21
02 02 01 22 21 20 11 10 12
11 11 22 20 01 12 10 21 02
12 12 21 01 10 22 02 11 20
10 10 20 12 22 02 21 01 11
22 22 11 10 02 21 20 12 01
20 20 10 21 11 01 12 02 22
21 21 12 02 20 11 01 22 10

1.4 The Algebraic Closure of Fields
Let R denote a commutative ring and let F denote a field for this section.

Definition 1.11. The monic polynomial in R[x] of the largest possible degree that divides (i.e.,
the remainder of the division is the zero polynomial) two polynomials f, g ∈ R[x] (not both the
zero polynomial) is called the greatest common divisor of f and g and is denoted as gcd(f, g).

Definition 1.12. A field F is called algebraically closed if every non-constant polynomial f ∈
F [x] has a root in F . An algebraic extension of a field F is an extension field K of F (Definition
1.1) such that every element of K is a root of some non-zero polynomial in F [x]. A field F is
called an algebraic closure of F if F is an algebraic extension of F and F is algebraically closed.

Theorem 1.13. Every field F has exactly one algebraic closure, denoted as F , up to isomorphism.

Proof. A proof can be found in [14, Tag 09GP].

Remark. Because of this theorem, instead of calling F an algebraic closure of F , we will call F
the algebraic closure of F .

Let f(x) = x2 + 7x + 12 ∈ Z[x] (remember that Z is a commutative ring) and g(x) =
2x + 8 ∈ Z[x]. We have that f(x) = (x + 3)(x + 4) and g(x) = 2(x + 4), so that
gcd(f, g) = x+ 4 ∈ Z[x].

The set of complex numbers, C, is algebraically closed by the Fundamental Theorem of
Algebra [15]. This means that for every non-constant polynomial

f(z) = a0 + a1z + · · ·+ an−1z
n−1 + anz

n

with a0, . . . , an ∈ C, the equation f(z) = 0 only admits solutions with z ∈ C.

The field of rational numbers, Q, is not algebraically closed, as for example the roots of
x2 − 2 ∈ Q[x] are not elements of Q.
The field of real numbers, R, is also not algebraically closed, as for example x2 +1 ∈ R[x]
does not contain roots in R.
Since C is a field containing the field R we know that C is an extension field of R. Moreover,
arbitrary elements a+bi ∈ C are roots of the non-zero polynomial x2−2ax+a2+b2 ∈ R[x].
Therefore, C is an algebraic extension of R. Since C is algebraically closed, we find that
C is the algebraic closure of R.

https://stacks.math.columbia.edu/tag/09GP


Chapter 2

Number Fields and Ideals

CSIDH, a form of isogeny-based cryptography, relies on the intricate relationships between elliptic
curves. Isogeny graphs offer a clear lens on how CSIDH functions, marking elliptic curves as nodes
and isogenies as edges of the graph. These isogenies are shaped by the actions of ideals on elliptic
curves. For those eager to grasp the basics of CSIDH quickly, the first couple of sections of this
chapter on number fields, number rings, and ideals provide a solid start. Yet, to truly appreciate
the depth of isogeny graphs and the mechanics behind the CSIDH encryption scheme, delving
into the entire chapter is recommended.

After establishing the groundwork in the first two sections, Section 2.3 and Section 2.4 discuss
norms, traces, discriminants, and (fundamental) units, equipping readers with the analytical tools
for the more advanced topics ahead. The journey continues through Section 2.5 and Section 2.6,
which explore factorisation of ideals and class groups of number fields. The last section presents
an example incorporating all the theories discussed throughout this chapter.

2.1 Number Fields
First off, let us remember from Definition 1.1 what subfields and extension fields are.

Definition 2.1. A subset K of a field F is called a subfield of F if K is a field with respect to
the addition and multiplication operation of the field F . Similarly, an extension (field) of a field
K is a field F such that K ⊆ F and the addition and multiplication operation of F are those of
K.

Definition 2.2. A field extension is defined to be a pair of fields F and K such that F is an
extension field of K. The degree of the field extension is denoted as [F : K], and equals the
dimension of F as a vector space over K.

The field C is an extension field of R as R is a field and the addition and multiplication
operation of C are inherited from R. We have that [C : R] = 2 as {1, i} is a basis.
The complex numbers, C, also form an extension field of Q. The degree of this field
extension, however, is infinite (as [C : Q] is infinite).

Definition 2.3. A number field (typically denoted by the capital letter K) is an extension field
of the field of rational numbers Q such that the corresponding field extension has finite degree.

Remark. The degree of a number field is said to be the degree of the corresponding field extension.

Definition 2.4. Let α be the root of a monic irreducible polynomial p ∈ Q[x] (Definition 1.3)
of degree n with rational coefficients. We can adjoin α to the field of rational numbers, forming

18
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the number field

Q(α) = {c0 + c1α+ · · ·+ cn−1α
n−1 : ci ∈ Q for all 0 ≤ i < n}.

Remark. In other literature (such as [16] and [17]) one can find the definition that Q[α] is the
smallest ring containing Q and α, and that Q(α) is the smallest field containing Q and α. That
way, Q(α) automatically becomes a number field. One can then show that Q[α] ∼= Q[x]/(p)
(which is defined similar to finite fields) and prove that Q[α] = Q(α). From those results, one
can see that our definition of Q(α) indeed forms a number field.

Constructing a number field using Definition 2.4 will imply that [Q(α) : Q] = n, and that
{1, α, . . . , αn−1} is a basis for Q(α) as a vector space over Q.

Let
√
2 be a root of x2 − 2, a monic irreducible polynomial of degree 2. We can adjoin√

2 to Q, giving
Q(

√
2) =

{
a+ b

√
2 : a, b ∈ Q

}
.

We can verify that this is indeed a field using Definition 1.1. Naturally, we have that
Q ⊆ Q(

√
2), confirming that Q(

√
2) is a number field.

Thus, Q is a subfield of Q(
√
2), Q(

√
2) is an extension field of Q, the degree of the field

extension is [Q(
√
2) : Q] = 2, and {1,

√
2} is a basis for Q(

√
2) as a vector space over Q.

2.2 Number Rings and Ideals
In this section, we will discuss number rings. Generally, all rings (Definition 0.4) discussed in
this thesis will be commutative with respect to multiplication.

Definition 2.5. A number ring is a subring of a number field K. If the number ring is finitely
generated (Definition 0.3) of rank [K : Q], then we call the number ring an order of K.

Definition 2.6. The ring of integers of a number field K is denoted as OK and contains all
orders of K. It is said to be the maximal order in K. Conversely, all orders R of K are subrings of
OK such that [OK : R] (the dimension of OK as a vector space over R) is finite. Additionally, the
ring of integers contains all roots that lie in K of monic polynomials in Z[x] [18, Theorem 3.20].

Remark. One can find equivalent definitions for the ring of integers and (maximal) orders of a
number field. Examples are contained in [19], [20], [18], and [21].

Theorem 2.7. Let Q(α) denote the number field of degree n obtained by adjoining α to Q, where
α is a root of some monic irreducible polynomial in Q[x]. For every order R of Q(α), there exists
a basis {ω1, ω2, . . . , ωn} of Q(α) such that

R = ω1Z× ω2Z× · · · × ωnZ.

That is, every element in R is a Z-linear combination of the basis {ω1, ω2, . . . , ωn}.

Proof. See [21, Proposition 2.2] and [18, p. 20]. Equivalent definitions of an order using this
theorem can be found in [22, pp. 212, 213] and [23, Definition 1].

Definition 2.8. Let α be a root of a monic irreducible polynomial in Z[x] of degree n. Then
Z[α] is defined as

Z[α] = {c0 + c1α+ · · ·+ cn−1α
n−1 : ci ∈ Z for all 0 ≤ i < n}.

Remark. To avoid confusion, if we write Z[α] in this thesis, we generally mean that α is the root
of a monic irreducible polynomial in Z[x].
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We have that Z[
√
2] = {a + b

√
2 : a, b ∈ Z} is a number ring of the number field Q(

√
2).

Since it is finitely generated (by 1 and
√
2) it is also an order of the number field Q(

√
2).

Also, Z[ 3
√
5] = {a + b 3

√
5 + c 3

√
25 : a, b, c ∈ Z} is a number ring of Q( 3

√
5). However,

S := {a + b 3
√
5 : a, b ∈ Z} is not a number ring of Q( 3

√
5) as it is not closed under

multiplication since ( 3
√
5)2 /∈ S.

The number field Q(
√
5) = {a + b

√
5 : a, b ∈ Q} has ring of integers OQ(

√
5) = Z[ 1+

√
5

2 ]

(in Section 2.5 we see how one can compute this). We can see that OQ(
√
5) = Z× 1+

√
5

2 Z.
As Z[2

√
5] is a subring of OQ(

√
5) and

[
Z[ 1+

√
5

2 ] : Z[2
√
5]
]
= 4 is finite, we know that

Z[2
√
5] is an order of Q(

√
5). Now, every element in Z[2

√
5] is a Z-linear combination of

the basis {1, 2
√
5}.

Definition 2.9. Number fields of degree 2 are called quadratic number fields.

Let D be a squarefree integer (without any squared factors) unequal to 0 and 1. For
any positive integer m, we define the quadratic number field Q(

√
m2D). We know that

the order Z[
√
m2D] satisfies Z[

√
m2D] = Z[m

√
D]. Therefore, we have that the order

Z[
√
m2D] is a subring of the order Z[

√
D]. Hence, multiplication and addition of elements

in Z[
√
m2D] can also be carried out in Z[

√
D]. Therefore, we are typically only interested

in the case m = 1.

In the integers we are quite familiar with the concept of prime numbers. A positive integer
greater than 1 is prime if it cannot be factored into two strictly smaller positive integers. So,
one might wonder, what happens in our newly created number rings. It turns out that our old
concept of primality does not hold any more, to which end ideals are introduced.

Definition 2.10. Let R be a commutative (number) ring. An ideal I of R is an additive
subgroup of R satisfying ra ∈ I for all r ∈ R and a ∈ I. The ideal generated by 0, i.e., the ideal
that only contains the additive identity element of R, is called the zero ideal of R.

Remark. Previously, we noted that all rings considered in this thesis will also be commutative.
Likewise, all number rings we consider will be finitely generated, so that they become orders.
If R is an order in a number field, then every ideal I is a finitely generated subgroup of R.
Therefore, we often denote an ideal by its generators (wrapped in brackets to distinguish them
from elements in Z).

Let R = Z be our commutative ring. We find that I = (3) is an ideal in R. The ideal is
generated by the element 3 ∈ Z and thus contains only the numbers in Z that are divisible
by 3.

Let R = Z[
√
−11] be an order in the number field Q[

√
−11]. The ideal I = (1 +

√
−11)

is generated by 1+
√
−11, e.g., we have that

√
−11 · (1+

√
−11) ∈ I. Let r = a+ b

√
−11

with a, b ∈ Z denote an arbitrary element of R. We must have r · (1 +
√
−11) ∈ I.

Suppose that I = {r · (1 +
√
−11) : r ∈ R} = {(a − 11b) + (a + b)

√
−11 : a, b ∈ Z}. To

verify that ra ∈ I for all r ∈ R and a ∈ I, we note that a ∈ I implies that there exists a
t ∈ R such that t + t

√
−11 = a. Our constraint thus becomes that rt · (1 +

√
−11) ∈ I.

But, as R is a ring, we know that rt ∈ R. Therefore, the constraint is satisfied, and we
indeed have that I = (1 +

√
−11) = {(a− 11b) + (a+ b)

√
−11 : a, b ∈ Z} is an ideal.
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Similarly, the ideal J = (2) is the set of numbers J = {2a+2b
√
−11 : a, b ∈ Z}. For every

r = c+d
√
−11 with c, d ∈ Z we have r(2a+2b

√
−11) = 2(ac−11bd)+2(bc+ad)

√
−11 ∈ J .

Choose R = Z[ 3
√
5], then the ideal I = (2 + 3 3

√
5 + 3

√
25) equals

I = {(2a+ 5b+ 15c) + (3a+ 2b+ 5c)
3
√
5 + (a+ 3b+ 2c)

3
√
25 : a, b, c ∈ Z}.

Take α to be a root of the polynomial x2 + 2x + 6, then Z[α] is an order in the number
field Q(α). The ideal I = (2, α) of Z[α] is generated by 2 and α. Therefore, any element
of I can be written as a Z[α]-linear combination of 2 and α.

Another example would be to take the order Z[
√
3,
√
5] of the number field Q(

√
3,
√
5)

with the ideal I = (4, 1 +
√
3, 2 +

√
5, 3 +

√
15).

We see that ideals are actually sets and not numbers. In our previous integer-only world
the number 1 divided every other number. One might question whether such an ideal exists for
number rings as well. The answer is that that ideal is not the zero ideal containing 1 element,
but rather the ideal (1), which equals the whole number ring! In this new realm of ideals, the
most trivial ideal we can think of is not the smallest, but rather the largest set. We say that an
ideal I divides an ideal J if I contains J . In other words, the larger set acts as the divisor. Now,
consider the ring R = Z. The ideal (2) of R comprises all even numbers. Notably, (2) divides
(4), consisting of all numbers divisible by 4. We also have that the ideal (1), which is equal to Z,
contains the even numbers and thus (1) divides (2) which in turn divides (4).

Also, for the remainder of this section, we let R denote a commutative ring.

Definition 2.11. Abstractly, the addition of two ideals I and J of R is defined as I+J = {i+j :
i ∈ I, j ∈ J}. Multiplication of two ideals is defined as IJ = {

∑n
i=1 xiyi : xi ∈ I, yi ∈ J, n ∈ Z≥0},

note that the sum is introduced in this product as an ideal must still be closed under addition
(since it is defined as an additive subgroup of R).

Theorem 2.12. If I and J are both ideals in R then so are the sum I + J and the product IJ .

Proof. See [24, Lemma 2.3] and [18, Prop. 2.4].

The ideal I divides I + I as I contains the smaller set I + I = {i+ i : i ∈ I}.

Define the ring R = Z[
√
15] with ideals I = (2, 1 +

√
15), J = (2), and L = (1 +

√
15).

I = {2a+ 2b
√
15 : a, b ∈ Z}+ {(a+ 15b) + (a+ b)

√
15 : a, b ∈ Z}

= (2) + (1 +
√
15) = J + L.

The product JL is the ideal (2 + 2
√
15). Note that JL is a smaller set than J and since

J contains JL we have that J divides JL, similarly L divides JL.

Definition 2.13. An ideal is called principal if it can be generated by a single element of R
(meaning that it equals an ideal of the form (r) with r ∈ R). If an ideal cannot be generated by
only one generator, it is called non-principal. We call R a principal ideal domain if every ideal
of R is principal.
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Let R = Z[
√
15], the ideal I = (2, 1+

√
15) is non-principal (as we will see in the following

example), whereas

I2 = ((2) + (1 +
√
15))2 = (4, 2 + 2

√
15, 2 + 2

√
15, 16 + 2

√
15)

= (4, 2 + 2
√
15, 14) = (4, 2 + 2

√
15, 2) = (2)

is principal. Note that in the equation above one must be careful that all the elements of
an ideal are still contained in the next ideal and no additional elements are introduced,
also, the second equality comes from the distributive law of multiplication of ideals over
addition of ideals [18, p. 15].

Definition 2.14. An ideal I 6= (1) of a number ring R is called a prime ideal if for any a, b ∈ R
with ab ∈ I, we have that a ∈ I or b ∈ I.

Similar to how we can factor numbers into products of prime numbers, ideals can also be
decomposed into products of prime ideals. We elaborate on this concept in Section 2.5.

2.3 Norm and Trace
Let K be a field and let L be a finite extension of degree n of K (we will use this notation
throughout the section). We can choose a basis {b1, b2, . . . , bn} ∈ L such that L is constructed
from K by taking K-linear combinations of that basis. In other words, if {b1, b2, . . . , bn} is a
K-basis for L, then L = {x1b1 + x2b2 + · · ·+ xnbn : xi ∈ K}.

Let α ∈ L and let V be the vector space spanned by the basis {b1, b2, . . . , bn}. Letmα : V → V
denote multiplication by α. Thus, for any basis element bj ∈ V we have mα(bj) = αbj =∑n

i=1 aijbi for some coefficients aij ∈ K. We can thus define a matrix, denoted as [mα], enlisting
the coefficients aij . The following examples compute this matrix for a couple of number fields.

Let K = Q and L = Q(
√
2) and choose the basis {1,

√
2}. Furthermore, let α = a+ b

√
2

for a, b ∈ Q, now we calculate αbi for all bi in the chosen basis.

α · 1 = a+ b
√
2

α ·
√
2 = 2b+ a

√
2

}
=⇒ [mα] =

[
a 2b
b a

]
.

Let K = Q and L = Q(γ) where γ is a root of the irreducible polynomial x2 + 2x + 6.
Select the basis {1, γ}, note that this is indeed a basis by Definition 2.4. Since γ is a root
of x2 +2x+6 we have γ2 +2γ+6 = 0 and thus γ2 = −2γ− 6. Choosing α = a+ bγ with
a, b ∈ Q, gives that

α · 1 = a+ bγ

α · γ = −6b+ (a− 2b)γ

}
=⇒ [mα] =

[
a −6b
b a− 2b

]
.

Let K = Q and L = Q(
√
3,
√
−5). One can verify that {1,

√
3,
√
−5,

√
−15} is a K-basis

for L. Let α = a+ b
√
3 + c

√
−5 + d

√
−15 for a, b, c, d ∈ Q, we get

α · 1 = a+ b
√
3 + c

√
−5 + d

√
−15

α ·
√
3 = 3b+ a

√
3 + 3d

√
−5 + c

√
−15

α ·
√
−5 = −5c− 5d

√
3 + a

√
−5 + b

√
−15

α ·
√
−15 = −15d− 5c

√
3 + 3b

√
−5 + a

√
−15

 =⇒ [mα] =


a 3b −5c −15d
b a −5d −5c
c 3d a 3b
d c b a

 .
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More examples are listed in [25, Ex. 2.3-2.6].

These multiplication matrices come in handy for computations in our fields L and K. To this
end, we define the norm, trace, characteristic polynomial, and discriminant. We note that these
definitions are independent of the choice of the basis {b1, b2, . . . , bn} [18, § 4] [26].

Definition 2.15. The norm and the trace from L to K are, respectively, are the maps NL/K :
L→ K and TrL/K : L→ K defined by

NL/K(x) = det [mx] and TrL/K(x) = trace [mx].

Similarly, if {b1, b2, . . . , bn} is a Z-basis for the order R in a number field L and K = Q, we can
define the restricted norm and restricted trace as maps NR/Z : R→ Z and TrR/Z : R→ Z defined
by

NR/Z(x) = det [mx] and TrR/Z(x) = trace [mx].

Remark. It can be seen that the codomain of the norm and trace indeed lie in K by [27] or [26,
Proposition 2.8] in combination with [26, Proposition 2.3].

Definition 2.16. The characteristic polynomial fxL/K ∈ K[X] of x ∈ L is the characteristic
polynomial of [mx], given by

fxL/K(X) = det(X · idL − [mx]).

Moreover, every x ∈ L is a root of its characteristic polynomial fxL/K [25, Theorem 5.6].

Definition 2.17. Let {b1, b2, . . . , bn} be any Z-basis for the order R of a number field. The
discriminant of R is defined as

∆(R) = det(TrR/Z(bibj))
n
i,j=1.

We define the discriminant of a number field K as ∆K := ∆(OK).

Continuing the examples from before we deduce that if K = Q and L = Q(
√
2), then

TrL/K(α) = 2a and NL/K(α) = a2 − 2b2. Meaning that for 3 + 2
√
2 ∈ L we have

TrQ(
√
2)/Q(3 + 2

√
2) = 6 and NQ(

√
2)/Q(3 + 2

√
2) = 32 − 2 · 22 = 1.

The characteristic polynomial becomes

fαQ(
√
2)/Q(X) = det

[
X − a −2b
−b X − a

]
= X2 − 2aX + a2 − 2b2.

Thus, we have f
√
2

Q(
√
2)/Q(X) = X2 − 2 and indeed

√
2 is a root of X2 − 2. On a different

note f1+
√
2

Q(
√
2)/Q(X) = X2 − 2X − 1. We can rewrite X2 − 2X − 1 = 0 as (X − 1)2 = 2,

signifying that 1 +
√
2 is a root of this characteristic polynomial.

Let R = Z[
√
2]. The discriminant ∆(R) can be calculated as

∆(R) = det

[
TrZ[

√
2]/Z(1) TrZ[

√
2]/Z(

√
2)

TrZ[
√
2]/Z(

√
2) TrZ[

√
2]/Z(

√
2 ·

√
2)

]
= det

[
2 0
0 4

]
= 8.

Had we taken the order R′ = Z[2
√
2] in L, we would have found that, using the basis
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{1, 2
√
2}, for any a, b ∈ Z we have TrR′/Z(a+ 2b

√
2) = 2a. Therefore,

∆(R′) = det

[
TrZ[2

√
2]/Z(1) TrZ[2

√
2]/Z(2

√
2)

TrZ[2
√
2]/Z(2

√
2) TrZ[2

√
2]/Z(8)

]
= det

[
2 0
0 16

]
= 32.

For K = Q and L = Q(γ) with γ a root of x2 + 2x + 6 we have TrQ(γ)/Q(α) = 2a − 2b
and NQ(γ)/Q(α) = a2 − 2ab+ 6b2.
The characteristic polynomial becomes

fαQ(γ)/Q(X) = det

[
X − a 6b
−b X − a+ 2b

]
= X2 − (2a− 2b)X + a2 − 2ba+ 6b2

giving f1+γ
Q(γ)/Q(X) = X2 +5 which has the two roots ±

√
−5. The roots of x2 +2x+6 are

−1±
√
−5, thus 1 + γ = ±

√
−5 is indeed satisfied.

Let R = Z[γ] and denote TrZ[γ]/Z(x) as Tr(x), then (remembering that γ2 = −6− 2γ)

∆(R) = det

[
Tr(1) Tr(γ)
Tr(γ) Tr(−6− 2γ)

]
= det

[
2 −2
−2 −8

]
= −20.

Take K = Q and L = Q(
√
3,
√
−5), then TrL/K(α) = 4a by the previous examples.

Denote TrZ[
√
3,
√
−5]/Z(x) as Tr(x), the discriminant of R = Z[

√
3,
√
−5] becomes

∆(R) = det


Tr(1) Tr(

√
3) Tr(

√
−5) Tr(

√
−15)

Tr(
√
3) Tr(3) Tr(

√
−15) Tr(3

√
−5)

Tr(
√
−5) Tr(

√
−15) Tr(−5) Tr(−5

√
3)

Tr(
√
−15) Tr(3

√
−5) Tr(−5

√
3) Tr(−15)


= 4 · 12 · (−20) · (−60) = 57600.

Theorem 2.18. Let K be a number field with extension L. The norm map NL/K : L → K
is multiplicative and the trace map TrL/K : L → K is additive. To put it differently, assume
that α and β are elements of L, then NL/K(αβ) = NL/K(α) · NL/K(β) and TrL/K(α + β) =
TrL/K(α) + TrL/K(β).

Proof. Previously, we defined a way to construct the multiplication matrix [mα] for some α ∈ L.
Using linear algebra, one can show that the determinant is multiplicative [28, Theorem 9.49] and
that the trace is additive. Therefore

NL/K(αβ) = det ([mαβ ]) = det ([mα][mβ ]) = det [mα] · det [mβ ] = NL/K(α) ·NL/K(β),

TrL/K(α+ β) = trace ([mα+β ]) = trace ([mα] + [mβ ])

= trace [mα] + trace [mβ ] = TrL/K(α) + TrL/K(β).

Remark. One can also show that the restricted norm map is multiplicative and the restricted
trace map is additive by letting K denote an order in a number field and defining L = Z in the
above theorem.

Definition 2.19. For any non-zero ideal I of the order R of some number field K extending
Q, we define the restricted norm of I, denoted NR/Z(I), to be the ideal of Z equal to the set
{NR/Z(x) : x ∈ I}.
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TakeR = Z[
√
15] and I = (2) as principal ideal inR. This ideal equals the set {2a+2b

√
15 :

a, b ∈ Z}. The restricted norm of any element α = c + d
√
15 ∈ R with c, d ∈ Z is

NZ[
√
15]/Z(α) = c2 − 15d2. Any element in the ideal, e.g., 2a + 2b

√
15 with a, b ∈ Z. will

have restricted norm NZ[
√
15]/Z(2a + 2b

√
15) = 4a2 − 60b2. The restricted norm of the

ideal will be NR/Z(I) = NR/Z((2)) = {NR/Z(x) : x ∈ (2)} = (4).
The non-principal ideal J = (2, 1 +

√
15) also has a restricted norm. This time the ideal

(2) has restricted norm (4) and the ideal (1 +
√
15) has restricted norm (−14). Thus, the

restricted norm of the ideal J will be generated by (4,−14) = (2) ⊂ Z. If there is any
ideal that divides J , its restricted norm must thus contain (2) ⊂ Z.
Suppose now that J equals a principal ideal (c + d

√
15), equating restricted norms then

gives us that c2 − 15d2 = ±2 must hold. Looking at the equation modulo 15 we see that
such a solution does not exist, thus J is indeed non-principal.

Remark. Often the restricted norm of an ideal is said to just be the generator of the resulting
ideal of Z (which must be a principal ideal) [29, Section I.8]. In the previous example this will
mean that the ideal (2) is said to have restricted norm 4 and (2, 1+

√
15) is said to have restricted

norm 2. This will also be done for the remainder of this thesis as it simplifies the statement of
some theorems later on.

2.4 Units
A unit is an element u of a ring R such that an element v ∈ R exists that satisfies vu = uv = 1
where 1 is the multiplicative identity of R. In the ring Z we had two units, namely ±1. In
number fields we can have an infinite number of units (see Theorem 2.20 below). An element u
of an order R is called a unit if and only if NR/Z(u) = {±1} [20, p. 16].

Let a, b ∈ Z, then from previous examples we know that NZ[
√
2]/Z(a+b

√
2) = a2−2b2. Now,

3+2
√
2 ∈ Z[

√
2] is a unit since (3+ 2

√
2) · (3− 2

√
2) = 1. Indeed, NZ[

√
2]/Z(3+ 2

√
2) = 1.

Likewise 1, −1, 3− 2
√
2, 7 + 5

√
2, 1 +

√
2 are all units of Z[

√
2].

Remember from Definition 2.6 that the ring of integers OK contains the roots of all monic
polynomials in Z[x]. That means that for every element α ∈ R, where R is an order of (and
thus contained in) OK , we have that there exists a non-zero monic polynomial in Z[x] with the
root α. Such a polynomial with the least degree is called a minimal polynomial of α. Now, each
polynomial f ∈ Z[x] is also a polynomial in C[x]. Since C is algebraically closed (Section 1.4),
we know that all roots of f will be contained in C. Roots of f ∈ C[x] are either real or complex,
depending on whether the root in question has an imaginary part.

Using this theory on minimal polynomials, we can state an important theorem regarding the
unit group of R, the group containing all units in R.

Theorem 2.20 (Dirichlet unit theorem, 1846). Let R = Z[α] be an order in a number field. Let
the minimal polynomial of α admit r real roots and 2s complex roots. Write µR for the group of
roots of unity in R, that is, all solutions to the equation xn = 1 for some positive integer n and
x ∈ R. Then µR is finite and the unit group of R can be written as

R× = µR × 〈η1〉 × 〈η2〉 × · · · × 〈ηr+s−1〉 ∼= (Z/#µRZ)× Zr+s−1.

Where η1, η2, . . . , ηr+s−1 are called fundamental units, forming a Z-basis for R×/µR.

Proof. See [30] or [31, Section 6.2].
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The case of imaginary quadratic number fields is of special interest in the CSIDH algorithm.
Specifically, orders of the form R = Z[

√
−p] for primes p are of interest. As √

−p is a root
of the monic polynomial x2 + p ∈ Z[x], and this polynomial has the least possible degree (as
constant polynomials and monic polynomials of degree 1 will never have √

−p as a root), we find
that x2 + p is the minimal polynomial of √−p. Since ±

√
−p are all the roots of the polynomial

x2 + p ∈ C[x], both having an imaginary part, we find that r = 0 and s = 1 in the Dirichlet unit
theorem. Therefore, R× = µR

∼= Z/#µRZ, implying that the unit group of R is finite.

The two fundamental units of Z[
√
2] are −1 and 1 +

√
2.

Let R = Z[
√
2] be an order in Q(

√
2). The minimal polynomial of

√
2 is x2 − 2 ∈ Z[x],

which admits 2 real roots and 0 complex roots. Using the Dirichlet unit theorem, we find
that R× = µR × 〈η1〉 as r + s− 1 = 2 + 0− 1 = 1.
In fact, µR = {±1} and η1 = 1 +

√
2. Therefore, all units of R are generated by 〈−1〉 ×

〈1 +
√
2〉, that is, they are of the form ±(1 +

√
2)k for some k ∈ Z.

If we rewrite the equation x2 − 2y2 = ±1 in R, we get that (x −
√
2y)(x +

√
2y) = ±1,

so that x−
√
2y and x+

√
2y must have restricted norms equal to ±1. As all units have

restricted norms equal to ±1, and are of the form ±(1 +
√
2)k we find the units

(1 +
√
2)2 = 3 + 2

√
2, (1 +

√
2)3 = 7 + 5

√
2, (1 +

√
2)4 = 17 + 12

√
2.

Now, these units give the integer solutions (x, y) ∈ {(1, 1), (3, 2), (7, 5), (17, 12)} of the
equation x2 − 2y2 = ±1.

Take R = Z[
√
7], then µR = {±1} are the roots of unity in R. Since the minimal

polynomial of
√
7 is x2 − 7, we find that r = 2 and s = 0, using the notation of Theorem

2.20. Hence, the unit group has the form R× = 〈−1〉 × 〈η〉 for some fundamental unit η.
For example, η = 8− 3

√
7 ∈ R is a fundamental unit.

The order R = Z[
√
−1] has µR = {±1,±

√
−1} as ±

√
−1 ∈ R are roots of x4−1. Moreover,

the minimal polynomial of
√
−1 is x2 + 1, and admits 0 real roots and 2 complex roots.

Thus, R× ∼= Z/4Z.

Units can be verified to be fundamental if the unit is not equal to an nth power of a different
unit where n is a positive integer.

We want to show that 1 +
√
2 is a fundamental unit in Z[

√
2]. Note that we indeed have

NZ[
√
2]/Z(1 +

√
2) = −1. In order to show that the unit 1 +

√
2 is fundamental we first

assume it is not fundamental. Thus, there exists a unit t = u+v
√
2 and k ∈ Z>1 such that

1+
√
2 = tk, thus tk ≈ 2.41. As the restricted norm of 1+

√
2 is −1, we have that k cannot

be even. Therefore, k must be odd and t must have restricted norm equal to −1. Since
tk > 1 and k > 1 we know that 1 < t <

√
2.41 ≈ 1.55 must hold. We can immediately see

that u, v < 0 implies that t < 0, and thus gives no solutions. In the case that u > 0 and
v < 0 we deduce, from the fact that t is a unit, that ±1 = (u+v

√
2)(u−v

√
2) = t(u−v

√
2).

Naturally u − v
√
2 > t as v is negative, so that we reach a contradiction to the equality.

Similarly, if u < 0 and v > 0 we have t(u− v
√
2) = ±1, we have u− v

√
2 < −1, and since

t > 1 we again reach a contradiction. Also, if v = 0, then tk would always be an integer and
never equal 1+

√
2. Similarly, if u = 0, then tk would either be integral or of the form x

√
2

for some x ∈ Z, which also never equals 1 +
√
2. Therefore, u, v > 0 holds. Since u, v > 0

and we require t < 1.55 such a t does not exist as t = u+ v
√
2 ≥ 1 +

√
2 ≈ 2.41 ≮ 1.55.
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Therefore, the unit 1 +
√
2 is fundamental and Z[

√
2]× = 〈−1〉 × 〈1 +

√
2〉.

2.5 Ramification and Factorisation
Before we can introduce the subject of ideal factorisation, we need to look at the definition of
invertible ideals.

Definition 2.21. An ideal I of an order R is called invertible if there exists an ideal J of R
such that I · J is a non-zero principal ideal [18, p. 17]. The regular prime ideals (Definition 2.14)
of R are the primes ideals of R that are invertible; if a prime ideal is not invertible it is called
singular. A Dedekind domain is a number ring in which all ideals are invertible. The smallest
extension of Z that is a Dedekind domain in any number field K is OK , the ring of integers of
K [18, Theorem 3.20].

Finding the ring of integers of some number field can be a difficult process. Often a guess is
made for OK and if there are singular primes left in this domain, then we know that our choice
of OK was not correct, as OK is Dedekind and all ideals must be invertible. Before we look at a
few examples there is another important theorem that will help with our understanding of this
concept later on.

Theorem 2.22 (Kummer-Dedekind). Let p be a prime number and let α be a root of a monic
irreducible polynomial f :=

∑m
i=1 cix

i ∈ Z[x] of degree m. First, find the residue classes of the
coefficients of f modulo p, to create the polynomial f ′ :=

∑m
i=1(ci mod p)xi ∈ Fp[x]. Next, factor

the polynomial f ′ into pairwise distinct monic irreducible polynomials g1, . . . , gn ∈ Fp[x] with
multiplicities e1, . . . , en ∈ Z≥1, i.e., we are able to write that f ′(x) = g1(x)

e1 · · · gn(x)en . Then,
for each gi, take the coefficients of gi and take some element in the residue class of the coefficient
to create a polynomial g′i ∈ Z[x].

Now, the ideal (p) in the order R := Z[α] factors into prime ideals as (p) = pe11 · · · penn
satisfying pi = (p, g′i(α)) and NR/Z(pi) = pdeg gi = pdeg g′

i . Also, denote ri ∈ Z[x] to be the
remainder of f ∈ Z[x] upon division by g′i ∈ Z[x], after writing q := p ∈ Z[x] (viewing p as a
constant polynomial with integer coefficients), we can state that

pi is singular ⇐⇒ ei > 1 and q2 divides ri ∈ Z[x].

Proof. See [32] or [18, Theorem 3.1].

Corollary 2.23. Suppose that pi is singular in the Kummer-Dedekind theorem and that the
quotient and remainder of the division of f by g′i equal q and r, respectively, i.e., we can write
f = q · g′i + r. Then 1

pq(α) is the root of a monic polynomial in Z[x], but does not lie in Z[α],
that is, it extends Z[α].

Proof. See [18, Theorems 3.1, 3.2].

Remark. In the next example we will see that the ideal (7) factors in OQ(
√
2) as (7,

√
2+3)(7,

√
2+

4). To make our notation more compact, we write (7,
√
2 + 3)(7,

√
2 + 4) = p7 · q7 to mean that

p7 := (7,
√
2 + 3) and q7 := (7,

√
2 + 4). We will continue to do this in the rest of our thesis

to assign letters to our ideals. Also, we note that this assignment of letters for the ideals will
always be in respective order.

Take K to be the number field Q(
√
2). In a previous example, we found that the char-

acteristic polynomial of
√
2 equals f := x2 − 2 which seems logical as

√
2 is a root of

this polynomial. Now, we make the guess that OK = Z[
√
2] (it is in fact true that Z[

√
2]
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equals OK).
The ideal (7) factors in OK as (7,

√
2 + 3)(7,

√
2 + 4) = p7 · q7. Since in F7[x] we have

x2 − 2 = (x+ 3)(x+ 4).
The ideal (17) factors in OK as (17,

√
2 + 6)(17,

√
2 + 11) = p17 · q17. Since in F17[x] we

have x2 − 2 = (x+ 6)(x+ 11).
The ideal (5) does not factorise in OK as x2− 2 is irreducible in F5[x], in other words, (5)
is a prime ideal. The same goes for (3), (11), (13), and others.

Let K be the number field Q(
√
5). The characteristic polynomial of

√
5 is f = x2 − 5.

Assume that OK = Z[
√
5]. The ideal (2) factors in OK as (2, 1 +

√
5)2 = p22 since

x2 − 5 = (x+ 1)2 in F2[x]. The remainder ri ∈ Z[x] of f upon division by g′i = x+ 1 can
be seen from

x2 − 5

x+ 1
= x+

−5− x

x+ 1
= x− 1 +

4

x+ 1

to be equal to the constant polynomial 4. But q2 := p2 = 22 = 4 ∈ Z[x] divides ri ∈ Z[x],
thus p2 is singular.
We find that f = (x − 1)g′i + 4, thus, using Corollary 2.23, we get that 1

2 (
√
5 − 1) does

not lie in OK = Z[
√
5]. We conclude that our original guess for OK was insufficient as it

did not include
√
5−1
2 ∈ Q(

√
5), which is a root of the monic polynomial x2+x− 1 ∈ Z[x].

As, Z[
√
5−1
2 ] contains Z[

√
5], we now assume that OK = Z[

√
5−1
2 ] (in fact, this is indeed

the ring of integers of K).
Let α denote

√
5−1
2 , the characteristic polynomial of α is f := x2+x−1. Now, (5) factors

in OK as (5, α+ 2)2 = p25 as in F5[x] we have x2 + x− 1 = (x+ 3)2. The remainder of f
upon division by x+ 3 is 5, so that p5 is a regular ideal of OK .
The ideal (2) does not factor in OK as x2 + x− 1 is irreducible in F2[x].

Other useful references for the Kummer-Dedekind theorem and its application are [33]
and [18, § 3, § 7].

Definition 2.24. Let p be a prime number and let (p) be an ideal of the order R that factors
as the product pe11 . . . penn of prime ideals, using the conventions of Theorem 2.22. We distinguish
two cases.

• The order R is called singular above p if one of p1, . . . , pn is singular in R.

• The order R is called regular above p if all prime ideals p1, . . . , pn are regular in R. We
distinguish a few more cases if R is regular above p.

– If n = 1 and e1 = 1, i.e., (p) itself is a prime ideal, we say that p is inert in R.
– If some ei > 1, we say that p is ramified in R, moreover, if n = 1 also holds, then p is

said to be totally ramified in R.
– If n > 1, then p is said to be split in R (note that p can be both split and ramified in
R). Moreover, if all ei = 1, then p is said to be totally split in R.

In the above examples we saw that Z[
√
5] was singular above 2 as the ideal p2 was singular.

However, the order R := Z[
√
5−1
2 ] was regular above 2. Since the ideal (2) could not be factored

in R, we say that 2 is inert in R. Also, 5 is ramified in R as it factored into a prime ideal with
multiplicity greater than one.
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Theorem 2.25. A prime p ramifies in the ring of integers, OK , of a number field K if and only
if p divides ∆K . Any order R of the number field K can only be singular above some prime p if
p2 divides ∆(R). Also, ∆K divides ∆(R).

Proof. See [18, Theorem 4.14] for the first statement, the second and third statement follow from
[18, Theorems 4.7, 4.10].

Take R = Z[
√
5], then we can calculate that ∆(R) = 20, meaning that the primes 2 and 5

are ramified in R. From the previous example, we know that R is singular above 2, so we
defined R′ = Z[

√
5−1
2 ]. We can calculate that ∆(R′) = 5, meaning that only 5 is ramified

in R′.
Also, since ∆(R′) = 5, there will be no prime p such that p2 divides 5. So R′ is not
singular above any prime, meaning that OK = R′.

Let R = Z[
√
2], we found in previous examples that ∆(R) = 8, implying that only 2 is

ramified in R. The ideal (2) factors in R as (2,
√
2)2 = (

√
2)2 = p22 as x2−2 = x2 in F2[x].

If we divide the characteristic polynomial x2 − 2 by x we get a remainder of −2. Since
22 = 4 does not divide −2, Theorem 2.22 implies that p2 is regular. Thus, R is regular
above 2 and 2 is ramified in R. Since only 2 is ramified in R, and it is regular in R we
know that there are no singular primes in R and thus OQ(

√
2) = R = Z[

√
2].

2.6 Class Groups
Definition 2.26. Let R be a Dedekind domain in a number field K, define a relation ∼ on
non-zero ideals of R by I ∼ J whenever there exist non-zero elements a, b ∈ R such that
(a)I = (b)J where (a) and (b) constitute the ideals generated by a and b. In fact, this relation
is an equivalence relation [34] and the equivalence classes are called ideal classes of R, denoted
as [L] for L an arbitrary ideal of R. We define the addition of [I] and [J ] to be the ideal class
[IJ ] (writing that [I] + [J ] = [IJ ]). In fact, the set of all ideal classes is called the class group
of R, denoted Cl(R), and as the name suggests, it forms a group under this addition operation
[20, Corollary 1]. Moreover, the class group of the ring of integers OK is denoted as Cl(K). The
ideal class containing all principal ideals of R forms the identity element of the class group, thus,
if IJ is a principal ideal we write [I] + [J ] = 0. If all ideals in R are principal, the class group
Cl(R) is trivial, and R is called a principal ideal domain.

Theorem 2.27 (Minkowski bound). Let OK = Z[α] be the ring of integers in a number field
K such that [K : Q] = n, where α is the root of some monic irreducible polynomial f ∈ Z[x] of
degree n. Let f (as a polynomial of C[x]) admit a total of 2s complex roots. Then every ideal
class contains an ideal of restricted norm not exceeding

MK =

(
4

π

)s
n!

nn
·
√

|∆K |.

In particular, the class group Cl(K) is generated by the ideal classes of prime ideals of restricted
norm at most MK .

Proof. See [18, Theorem 5.9].

Let K = Q(
√
−5), we have OK = Z[

√
−5] and ∆K = −20 as well as 2 complex roots

and 0 real roots of the minimal polynomial x2 + 5 of
√
−5. This implies that MK =
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4
π

2
4

√
20 ≈ 2.847. Hence, the class group Cl(K) is generated by ideal classes of prime

ideals of restricted norm at most 2. The ideal (2) factors in OK as (2, 1 +
√
−5)2 = p22,

since x2 + 5 = (x+ 1)2 in F2[x].
Since Cl(K) is generated by the ideal class of p2, in order to prove that the class group of
OK has order 2 (since p22 is principal the class group has order dividing 2) we must show
that [p2] 6= 0, i.e., that p2 is non-principal in OK .
Suppose that p2 = (a + b

√
−5) with a, b ∈ Z. Since p2 has restricted norm 2 (Theorem

2.22), and we know that NZ[
√
−5]/Z(a+ b

√
−5) = a2 + 5b2, we need to solve the equation

a2+5b2 = 2, which has no solutions, resulting in a contradiction. Thus, p2 is non-principal
and the class group of K has order 2.

Take K = Q(
√
130), we have OK = Z[

√
130] and ∆K = 520. The minimal polynomial of√

130, which is x2−130, has 2 real roots and 0 complex roots. Therefore, MK = 2
4

√
520 ≈

11.40, implying that Cl(R) is generated by the ideal classes of prime ideals of restricted
norm at most 11. We start by factoring some ideals in OK

(2) = (2,
√
130)2 = p22,

(3) = (3, 1 +
√
130)(3, 2 +

√
130) = p3q3,

(5) = (5,
√
130)2 = p25,

(7) = (7, 2 +
√
130)(7, 5 +

√
130) = p7q7,

(11) = (11, 3 +
√
130)(11, 8 +

√
130) = p11q11.

This implies that 2[p2] = 0, [p3] + [q3] = 0, 2[p5] = 0, [p7] + [q7] = 0, and [p11] + [q11] = 0.
Now, for k ∈ Z we have that NZ[

√
130]/Z(k −

√
130) = k2 − 130. Therefore, the ideal

(11−
√
130) has restricted norm −9. From Theorem 2.22 we know that NZ[

√
130]/Z(p3) = 3.

As the restricted norm is multiplicative, and units are the only elements of an order with
restricted norm equal to ±1, we know that (u)p23 = (v)(11 −

√
130), where u and v are

units in OK . Hence, p23 and (11−
√
130) are in the same ideal class. We write 2[p3] = 0.

Also, (12−
√
130) has restricted norm 14, without loss of generality, factor it as p2p7. Then,

[p2] + [p7] = 0. The class group is thus generated by (the ideal classes of) {p2, p3, p5, p11}.
Factoring (14−

√
130) as p2p3p11 (without loss of generality) gives [p2] + [p3] + [p11] = 0,

implying that the class group is also generated by {p2, p3, p5} (as [p11] is generated by
[p2] and [p3]). Additionally, we factor (5 −

√
130) as p3p5p7, implying that [p3] + [p5] =

−[p7] = [p2] meaning that the class group is generated by {p3, p5}.
We know that 2[p3] = 0 and that 2[p5] = 0. In order to show that the class group
Cl(K) = 〈[p3]〉 × 〈[p5]〉 ≡ (Z/2Z)2 we need to show that both p3 and p5 are non-principal
and that [p3] 6= [p5].
For some principal ideal (a+ b

√
130) with a, b ∈ Z we have that NZ[

√
130]/Z(a+ b

√
130) =

a2−130b2. If p3 is principal we must thus have a2−130b2 = 3 for some a, b ∈ Z. Looking
at the equation modulo 130 we see that we must have a2 ≡ 3 (mod 130). But 3 is not
a quadratic residue (see Definition 5.1 if the term is unfamiliar) modulo 130, thus p3 is
non-principal. Since 5 is also not a quadratic residue modulo 130 we also know that p5 is
non-principal.
If [p3] = [p5] we have 0 = 2[p3] = [p3p5], meaning that p3p5 is principal. But 15 =
a2 − 130b2 ≡ a2 (mod 130) is not a quadratic residue, meaning that [p3] 6= [p5]. We
conclude that Cl(K) = 〈[p3]〉 × 〈[p5]〉 ≡ (Z/2Z)2.

Many more examples are listed in [35, Ex. 2.1-2.6, 3.1–3.4].
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2.7 Overarching Example
As an example combining the theory of ideals and numbers fields we will compute all integer
solutions to the equation x2 − 109y2 = 1. Other such examples are listed in [18, § 7].

To this end, we define the number field K = Q(
√
109), now, solutions to the equation amount

to finding solutions to
(x−

√
109y)(x+

√
109y) = 1.

We see that both parts in brackets must be represented by some element in the unit group of
the ring of integers of our number field, that is, they must be an element of O×

K . We proceed by
computing O×

K , to which end we first find OK .
Take R = Z[

√
109], using Section 2.3 we find that the characteristic polynomial of

√
109

is x2 − 109. Section 2.5 now tells us that the ideal (2) factors in R as (2, 1 −
√
109)2 = p22.

Furthermore, the remainder of x2 − 109 upon division by x − 1 is −108 ∈ Z[x], sadly 22 = 4
divides −108, thus R is not equal to the ring of integers OK by Theorem 2.22. We extend R by
using Corollary 2.23 and the fact that x2 − 109 = (x− 1)(x+ 1)− 108, giving that the element
1
2 (
√
109 + 1) extends the order R.

Now, let α =
√
109+1
2 and let S = Z[α], we know that R ⊂ S so S indeed extends R. Define

γ = a+ bα ∈ S with a, b ∈ Z. Since α2 = (
√
109+1)2

4 = 55+
√
109

2 = 27 + α we have

γ · 1 = a+ bα

γ · α = 27b+ (a+ b)α

}
=⇒ [mγ ] =

[
a 27b
b a+ b

]
.

Denote TrZ[α]/Z(x) as Tr(x), then Tr(γ) = 2a+ b. Also,

∆(S) = det

[
Tr(1) Tr(α)
Tr(α) Tr(27 + α)

]
= det

[
2 1
1 55

]
= 109.

Since 109 is prime, Theorem 2.25 tells us that there S is regular above all primes, implying that
OK = S and ∆K = ∆(S) = 109. Furthermore, α is a root of x2 − x − 27, its characteristic
polynomial (as well as a minimal polynomial). There are 2 real roots and 0 pairs of complex roots
of this polynomial, the Minkowski bound from Section 2.6 therefore equals MK = 1

2

√
109 ≈ 5.22,

which implies that Cl(K) is generated by primes of norm at most 5. Since the characteristic
polynomial of α is x2 − x− 27, we get that 2 in inert in OK as x2 − x− 27 is irreducible in F2[x].
We also have (3) = (3, α)(3, α−1) = p3q3 and (5) = (5, α−2)(5, α+1) = p5q5 in OK . Therefore,
only p3 and p5 are possible generators of Cl(K).

For k ∈ Z we have NZ[α]/Z(k − α) = k(k − 1)− 27 = k2 − k − 27 = f(k). Since f(6) = 3 and
6 − α ∈ p3, we know that (6 − α) = p3, hence p3 is principal. Also, f(7) = 15, 7 − α ∈ q3, and
7− α ∈ p5, thus 7− α ∈ q3p5 and (7− α) = q3p5, and hence [p5] = [p3], implying that p5 is also
principal. Therefore, Cl(K) is trivial and OK is a principal ideal domain.

We have f(1) = −27, thus (1 − α) = q33 = (27)p−3
3 (as we have that (3) = q3p3 and p3

is invertible as we are working in a Dedekind domain) and (6 − α) = p3. The principal ideal
generated by η = (1 − α)a(6 − α)b/27a thus factors as p−3a+b

3 for arbitrary a, b ∈ Z. If we take
(a, b) = (1, 3) we have −3a+ b = 0 and get the unit ideal

η = (1− α)(6− α)3/27 = (1− α)(63− 11α)(6− α)/27

= (33− 6α)(63− 11α)/27 = (3861− 675α)/27 = 143− 25α.

And indeed NZ[α]/Z(143 − 25α) = −1, implying that η is a unit according to the definition in
Section 2.4.

It remains to prove that η is a fundamental unit. As η has a negative norm, it cannot be the
square of a unit, and must therefore be some odd power of a unit. Since η = 143−25α ≈ −0.00383,
we know that η−1 ≈ −1/(−0.00383) ≈ 261. We already know that η cannot be a square, thus if
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η = tk for any odd k ∈ Z>1 and unit t = u+vα with norm −1 and inverse t−1 = u+v−vα, then
η−1 = (t−1)k, thus 1 < t−1 = u+v−vα < 3

√
η−1 ≈ 6.40. Taking inverses with respect to −1 then

gives that −1 < t = u+ vα < 3
√
η ≈ −0.157. This relation implies that −1− vα < u < 3

√
η− vα,

substituting this into the relation for t−1, subtracting vα from both sides and dividing by 1− 2α
gives −0.708 < v < −0.109, which is impossible as v needs to be an integer. Therefore, η is a
fundamental unit and we have

O×
K = 〈−1〉 × 〈143− 25α〉.

We are almost done with our calculations, except for the fact that we set out to find the
integer solutions to x2 − 109y2 = 1. We know that η = 143 − 25α is a fundamental unit in
Z[

√
109+1
2 ], but converting this to our original basis {1,

√
109} gives us η = 143−25

√
109+1
2 which

does not give us an integer solution. Therefore, we compute powers of η until the coefficient of
α is even.

η = 143− 25α

η2 = 37324− 6525α

η3 = 9741707− 1703050α

= 9741707− 1703050(
√
109 + 1)/2

= 8890182− 851525
√
109.

Now, the pair (x, y) = (8890182, 851525) satisfies x2 − 109y2 = −1, but not x2 − 109y2 = 1. We
square our answer to get the correct result.

ε := η6 = (8890182− 851525
√
109)2 = 158070671986249− 15140424455100

√
109.

The powers ±1,±ε±1,±ε±2,±ε±3, . . . , written in the form x +
√
109y represent all solutions

(x, y) satisfying x2 − 109y2 = 1, some examples are listed below.

1 =⇒ (1)2 − 109 · (0)2 = 1,

−1 =⇒ (−1)2 − 109 · (0)2 = 1,

ε =⇒ (158070671986249)2 − 109 · (−15140424455100)2 = 1,

−ε−1 =⇒ (−158070671986249)2 − 109 · (−15140424455100)2 = 1,

ε2 =⇒ (49972674684368648757690180001)2 − 109 · (−4786514135549389701035839800)2 = 1,

ε−2 =⇒ (49972674684368648757690180001)2 − 109 · (4786514135549389701035839800)2 = 1,

ε3 =⇒ (15798428536616731910550597262825995341626249)2−
109 · (−1513215011755943526709349270967663109365300)2 = 1.



Chapter 3

Elliptic Curves

The importance of elliptic curves in contemporary cryptography cannot be overstated. They
provide the backbone for several encryption protocols, with the first ones published in 1985
[36] [37]. The theory of elliptic curves provides record-breaking methods to factorise numbers.
CSIDH heavily relies on the use of elliptic curves, and computations involving elliptic curves
form the backbone of their algorithm.

This chapter starts by introducing the concept of a projective plane, a helpful idea that
provides building blocks for other theorems on elliptic curves. Section 3.2 delves into the funda-
mentals of elliptic curves, particularly focusing on the operation of addition over elliptic curves
as defined by the group law. In the final section we combine our theory with Chapter 1 and de-
fine elliptic curves over finite fields, forming the foundation for the next chapter which discusses
morphisms of elliptic curves.

3.1 Projective Plane
As we will see later on, the projective plane allows us to state formulas and methods regarding
elliptic curves. We will look at some definitions regarding the projective plane at the start of
this section, after which we will look at an example of a projective line, ending the section with
some intuition about projective planes.

Definition 3.1. Let K be a field. Define a triple to be an element (x, y, z) ∈ K3 such that at
least one of x, y, z is non-zero. Two triples (x1, y1, z1) and (x2, y2, z2) are said to be equivalent
if there exists a non-zero element λ ∈ K such that (x1, y1, z1) = (λx2, λx2, λz2). This relation
forms an equivalence relation, and the set of all equivalence classes is called the projective plane
over K, denoted as P2

K . The equivalence class of (x, y, z) ∈ K3 is denoted as (x : y : z) ∈ P2
K

and is called a projective point. Typically, if K is algebraically closed (Definition 1.12) and it is
clear which field we are working in, we denote the projective plane by P2 instead of P2

K
.

For the projective plane over a field K we distinguish two cases for projective points (x : y :
z) ∈ P2

K . If z 6= 0, then (x : y : z) = (x/z : y/z : 1). Such projective points are called finite
points in P2

K . If z = 0, we have (x : y : z) = (x : y : 0). These points are called the points at
infinity.

Consider the two-dimensional affine plane over K, defined by A2
K := K ×K. Upon mapping

every point (x, y) ∈ A2
K to (x : y : 1) ∈ P2

K , we find that A2
K is identified with the finite points

in P2
K .

Definition 3.2. Let K be a field. A line in P2
K is the collection of all points (x : y : z) ∈ P2

K

satisfying ax+ by + cz = 0 for some a, b, c ∈ K.

33
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Remark. Suppose that the triple (x, y, z) is a solution to ax + by + cz = 0 for some a, b, c ∈ K.
Then, for any λ ∈ K \ {0}, we will also have that the triple (λx, λy, λz) will be a solution to
the equation. Hence, we are able to state that an entire equivalence class of these triples (a
projective point) can satisfy the equation.
Remark. One can show that if a triple (x, y, z) satisfies F (x, y, z) = 0 where F is a homogeneous
polynomial of degree n (meaning that F (λx, λy, λz) = λnF (x, y, z) for all λ ∈ K), then all triples
in the equivalence class (x : y : z) will satisfy the equation. Equivalently, polynomials that are
the sum of terms of the form axiyjzk with a ∈ K and i+ j+k = n are homogeneous. Using this,
we find that the equations from Definition 3.2 and Definition 3.4 (which comprise all the types
of projective equations used in this thesis) can be rewritten into the form F (x, y, z) = 0 where
F is homogeneous. We will not go deeper into the subject of homogeneity, and instead refer the
reader to [38, Section 2.3], [39, Appendix A.2], [40, Section I.2], and [41, Lecture 1].
Definition 3.3. Let L be an algebraic extension (Definition 1.12) of K. A point (x : y : z) ∈ P2

K

is called L-rational if (x : y : z) ∈ P2
L. Similarly, a point (x, y) ∈ A2

K
is called L-rational if

(x, y) ∈ A2
L.

Let K be the field of rational numbers. We start by writing down all solutions to the
projective line (the line in P2

Q)
3x− y + z = 0.

We can see that {(u : 3u + v : v) ∈ P2
Q : u, v ∈ Q} forms a set of all solutions. To get all

finite points on the line, we enter the case v 6= 0, which gives the points (uv : 1 + 3u
v : 1) ∈

P2
Q.

We can also determine all finite points of the projective line using the substitution x′ =
x/z, y′ = y/z, and z′ = z/z = 1, which gives

3x′ − y′ + 1 = 0.

Such that the Q-rational point (a, 3a+ 1) with a ∈ Q arbitrary forms a parameterisation
of all solutions. Using the (bijective) map (x, y) → (x : y : 1), we can see that (a, 3a+ 1)
maps to (a : 3a + 1 : 1). Thus, using this method, we find that all finite points on our
projective line are (a : 3a+ 1 : 1) ∈ P2

Q.
By setting a = u/v, we can see that both methods of enumerating the finite points on
the projective line give the same answer.

To conclude this section we provide some intuition about projective planes. The main idea
is to introduce points at infinity. In affine planes, one can find a unique line through any two
distinct points, and parallel lines do not intersect. However, in projective planes we can not only
state that there exists a unique line through two distinct points, but we can also state that any
two distinct lines intersect in exactly one point. In a projective plane, two lines that are parallel
to each other (with respect to the finite points), are defined to intersect at a point at infinity
determined by the direction of the lines. Informally, this means that we can write the projective
plane as follows.

P2 = A2 ∪
{

directions in A2
}
.

The set of directions in A2 is the set of all the points at infinity.

3.2 Elliptic Curves
Definition 3.4. An elliptic curve in short Weierstrass form defined over a field K is the collection
of all points (X : Y : Z) ∈ P2

K
that satisfy

Y 2Z = X3 + aXZ2 + bZ3, (3.1)
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for some a, b ∈ K with 4a3 + 27b2 6= 0.

If we substitute Z = 0 in equation (3.1) we get X3 = 0, which has the triple root X = 0.
This gives us all points at infinity on the elliptic curve, namely (0 : 1 : 0) (which corresponds to
the direction of a vertical line).

Elliptic curves are often written in their affine form. Upon setting x = X/Z and y = Y/Z,
and substituting this into equation (3.1) we can define an elliptic curve over K as the collection
of points (x, y) ∈ A2

K
satisfying

y2 = x3 + ax+ b

plus the projective point at infinity P∞ := (0 : 1 : 0). Just as before, we have that a, b ∈ K and
4a3 + 27b2 6= 0 must hold.

Let E be the elliptic curve over Q defined by the affine equation

y2 = x3 − 5x+ 2.

Since −5, 2 ∈ Q and 4 · (−5)3 + 27 · 22 6= 0 we know that E indeed is an elliptic curve.
Take the Q-rational point P = (2, 0), we have that P ∈ E as 02 = 23−5 ·2+2. The point
Q = (−2, 2) ∈ A2

Q also satisfies Q ∈ E. We also have that (−2,−2) ∈ E. The Q-rational
point R = ( 11316 ,

1143
64 ) is also a point on the elliptic curve.

The Q(
√
2)-rational points (0,

√
2) and (0,−

√
2) are points on the elliptic curve.

The point (1,
√
2i) ∈ Q lies on the elliptic curve. Note that

√
2i is a root of the polynomial

x2 + 2 ∈ Q[x] and thus resides in the algebraic closure (Definition 1.12) of Q.

It turns out that we can find a group operator hidden in these elliptic curves.

3.2.1 The Group Law
Definition 3.5. Define an elliptic curve E over a field K and choose two points P and Q on
the elliptic curve. By Bézout’s theorem [39, Theorem A.1] [41, Theorem 18.3] [42, Chapter 3],
the line through P and Q will intersect the elliptic curve in a third point (this specific statement
can be found in [38, Section 2.2]), denoted P ∗ Q and called the composition of P and Q. See
Figure 3.1.

Remark. If the points P and Q are equal, then the line through them is taken to be the tangent
line of the elliptic curve at P . We say that the tangent line intersects the curve with multiplicity
2 at P . Points of inflection on the elliptic curve intersect the elliptic curve with multiplicity 3.

Figure 3.1: The composition of points on the elliptic curve y2 = x3 − 3
2x+ 2 plotted over A2

R.
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What about the point at infinity on the elliptic curve, i.e., P∞ = (0 : 1 : 0), is our definition
of composition well-defined at this point? First, we look at P∞ ∗Q for any other point Q on the
elliptic curve. The vertical line coming down from P∞, crosses Q := (Qx, Qy) and (Qx,−Qy).
Second, a neat consequence of P∞ being a triple root in equation (3.1) is that P∞ ∗ P∞ = P∞.
Having discussed these special cases, we are assured that Definition 3.5 is indeed well-defined.

There is another nice property of composing points in this way. Namely, if E is defined over
Q, and P and Q are points in P2

Q, then we have that P ∗Q ∈ P2
Q [43]. So the composition of two

rational points is also rational.
Sadly however, the rational points on an elliptic curve under composition do not behave as a

group as composition is not associative to start with (see Figure 3.2). On the bright side, without
too much effort, we can define a group operation on the rational points on the elliptic curve.

Figure 3.2: The composition of points three points P , Q, and R on the elliptic curve y2 =
x3 − 5

2x+ 2 plotted over A2
R in two different ways.

Definition 3.6. Take an arbitrary point of the elliptic curve to be the identity element of the
group, denote it as O. We define the operation + on two points P and Q on the elliptic curve
as P +Q = O ∗ (P ∗Q).

Under this operation, the rational points on an elliptic curve form an abelian group. The
proof that this operation is associative can be found in [38, Section 2.4], computer-assisted proofs
using the explicit formulas (we derive these in Section 3.2.2) can be found in [44] and [45]. The
following famous theorem gives an important property of this group.
Theorem 3.7 (Mordell’s theorem, 1922). The set of rational points over an elliptic curve is a
finitely generated abelian group under the + operator from Definition 3.6.
Proof. See [46].

For the set of rational points on an elliptic curve, being finitely generated means that there
exists a set of finitely many rational points on the elliptic curve, such that every other rational
point on the curve can be found by repetitively applying our + operation to these points (and
reflecting points across the x-axis).

We end this subsection by noting something about O, the identity element of our group. The
choice of O is entirely arbitrary, but in most cases it is chosen to be the point at infinity (0 : 1 : 0).
This simplifies things greatly in terms of visualisation and understanding. Simply draw a line
through the two points you want to add, find the other point of intersection with the elliptic
curve and reflect it around the x-axis, and you are done. This choice also makes sense as it is
the only projective point that lies on every elliptic curve.

3.2.2 Explicit Formulas for the Group Law
Given an elliptic curve over K which, in its affine form, can be written down as

y2 = x3 +Ax+B. (3.2)
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We would like to find explicit formulas to add two points P := (Px, Py) and Q := (Qx, Qy) with
Px, Py, Qx, Qy ∈ K on this elliptic curve, instead of having to draw lines and finding intersection
points.

We take the identity O to be (0 : 1 : 0) for the remainder of this section (and even this thesis).
Also, for an arbitrary point R := (Rx, Ry) on the elliptic curve we define −R := (Rx,−Ry), the
point R reflected across the x-axis.

There are a couple of cases we can have, we list them below.

– P = O and Q = O: We have already seen that O ∗ O = O. Hence, we also have
O +O = O ∗ (O ∗ O) = O ∗ O = O.

– P 6= O and Q = O: The line through P and O is equal to the vertical line through P .
This line intersects P in −P = (Px,−Py), the point P reflected across the x-axis. Thus,
P ∗ O = −P , therefore O + P = O ∗ (P ∗ O) = O ∗ (−P ) = P .

– P = O and Q 6= O: Swap P and Q and apply the case P 6= O and Q = O.

– Q = −P 6= O: We find that P + Q = P + (−P ) = O ∗ (P ∗ (−P )) = O ∗ O = O. As the
line through P and −P will be the vertical line extending to infinity.

– P 6= O, Q 6= O, and P 6= ±Q: We need to find the slope of the lines through both P and
Q, this line will have a slope, λ, of

λ =
Qy − Py

Qx − Px
.

Note that we cannot have Qx = Px as we assumed that P 6= ±Q.
The derivation below these cases then finds the explicit coordinates of P +Q.

– P = Q 6= O and Py 6= 0: We are trying to find P + P , which will be denoted as [2]P .
Note that if Py = 0, we enter the case Q = −P 6= O. To do this we need to set up the
tangent to the elliptic curve at point P . Taking the derivative on both sides of the equation
y2 = x3 +Ax+B, yields 2ydy = (3x2 +A)dx. The tangent line of the elliptic curve at P
will thus have a slope, λ, of

λ =
dy

dx

∣∣∣∣
P

=
3P 2

x +A

2Py
.

Given λ, the slope of the line through P and Q (which we define the tangent line at P if
P = Q), we would like to find the third intersection point of the line through P and Q with the
elliptic curve.

Define µ = Py − λPx = Qy − λQx, then the line through the points P and Q can be written
as: y = λx+ µ. Plugging this formula into equation (3.2) we get:

y2 = (λx+ µ)2 = x3 +Ax+B.

We thus need to find the roots of

x3 +Ax+B − (λx+ µ)2 = x3 − λ2x2 + (A− 2λµ)x+ (B − µ2).

But, we already know two solutions, namely Px and Qx, since the line goes through these two
points. Define the x-coordinate of the third intersection point to be x3, we now state that

x3 − λ2x2 + (A− 2λµ)x+ (B − µ2) = (x− Px)(x−Qx)(x− x3).

Writing the right-hand side out gives us

x3 − (Px +Qx + x3)x
2 + (PxQx + Pxx3 +Qxx3)x− PxQxx3.
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Combining both sides of the equation allows us to equate coefficients that belong to identical
degrees of x, giving us some direct formulas to calculate x3:

x3 = λ2 − Px −Qx =
A− 2λµ− PxQx

Px +Qx
=
µ2 −B

PxQx
. (3.3)

Thus, P +Q can be written as (note the reflection around the x-axis)

P +Q = (λ2 − Px −Qx,−λ(λ2 − Px −Qx)− µ).

Now, remember that we said that elliptic curves defined over the rational numbers with
points P,Q ∈ P2

Q on the elliptic curve will have P ∗Q ∈ P2
Q. In other words, the composition of

two rational points is also rational. This result is immediate from the explicit formulas that we
derived above.

We define an elliptic curve over A2
Q with the affine form

y2 = x3 − 2x+ 2. (3.4)

Plugging in 1
2 and − 3

2 into the equation of the elliptic curve will result in the two points

P =
(

1
2 ,
√

1
23 − 1 + 2

)
=
(

1
2 ,

3√
8

)
and Q =

(
− 3

2 ,−
√

− 33

23 + 3 + 2

)
=
(
− 3

2 ,
√

13
8

)
on

the elliptic curve. A visualisation of this addition can be seen in Figure 3.3. Remember
that although the elliptic curve is defined over A2

Q, all points of the elliptic curve reside
in P2

Q.
We get line through P and Q, in the form as y = λx+ µ, with coefficients

λ =
Py −Qy

Px −Qx
=

1

2
· 3 +

√
13

2
√
2

, µ = Py − λPx =
3√
8
− 1

2
· 3 +

√
13

2
√
2

· 1
2
=

9−
√
13

8
√
2

.

The final addition can be written and simplified to

P +Q =

(
27 + 3

√
13

16
,−48 + 7

√
13

16
√
2

)
≈ (2.36,−3.24).

Figure 3.3: Various additions of two points on the elliptic curve from equation (3.4).
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As a different example we will add P =

(
3
2 ,
√

33

23 − 3 + 2

)
=
(

3
2 ,
√

19
8

)
to itself, using

the same elliptic curve from equation (3.4). A visualisation of this addition can be seen
in Figure 3.3.
We compute the slope λ of the tangent line at P and the parameter µ such that the
tangent line at P can be written as y = λx+ µ.

λ =
3P 2

x +A

2Py
=

27
4 − 2√
19/2

=

√
19

8
, µ = Py − λPx =

√
19

8
−
√

19

8
· 3
2
= −1

2

√
19

8
.

The final x-coordinate of P +P can be evaluated in numerous ways according to equation
(3.3). The y-coordinate can be calculated using λ([2]P )x + µ, or by plugging the newly
found x-coordinate in equation (3.4) and taking the positive solution. All in all, we get
the relations

(P + P )x = ([2]P )x = λ2 − 2Px =
µ2 −B

P 2
x

=
A− 2λµ− P 2

x

2Px
= −5

8
,

(P + P )y = ([2]P )y = λ([2]P )x + µ = −
√
([2]P )3x − 2([2]P )x + 2 = − 9

32

√
38,

P + P = [2]P =

(
−5

8
,− 9

32

√
38

)
≈ (−0.625,−1.734).

3.3 Elliptic Curves over Finite Fields
For the remainder of this section, let q be the power of some prime p, such that q = pm for some
positive integer m. Extending Definition 3.4, we find that an elliptic curve (in short Weierstrass
form) defined over the finite field Fq will have coefficients in Fq. We note that the formulas for
addition over an elliptic curve derived in Section 3.2.2 can also be evaluated over Fq.

We define an elliptic curve over the finite field F7 with the affine form

y2 = x3 − 2x+ 2.

Using brute force one can find some points on the elliptic curve. For example P = (1, 1)
and Q = (4, 3) are both on the elliptic curve. To add P and Q we evaluate (in F7)

λ =
Py −Qy

Px −Qx
=

−2

−3
=

2

3
= 3, µ = Py − λPx = 1− 3 = −2.

Therefore, λ2−Px−Qx = 32−1−4 = 4 and P+Q = (4,−4λ−µ) = (4,−3 ·4+2) = (4, 4).
Similarly, evaluating P + P gives λ = 3·12−2

2 = 4 and µ = 1 − 4 = −3. Therefore,
P + P = (0, 3).

In general, points of an elliptic curve E defined over a finite field Fq are not necessarily
contained in the finite field, instead the points belong to Fq, the algebraic closure of Fq, from
Definition 1.12.

Take the elliptic curve E : y2 = x3 − 2x+ 2 defined over the finite field F7.
Let s be a root of the polynomial x2+6x+3 ∈ F7[x] and define F72 to be F7[x]/(x

2+6x+3)
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as in Theorem 1.7. The F72 -rational (but not F7-rational) point P = (2, 6s+ 4) is on the
elliptic curve E as (6s+ 4)2 = s2 + 6s+ 2 = 6 = 23 − 2 · 2 + 2.

In this example, we have seen that the points of an elliptic curve over Fq are not always
Fq-rational. We denote the subset of points on E that are Fq-rational by E(Fq).

The security of many cryptosystems relies on the difficulty of the discrete logarithm problem
in a group (Z/pZ) for some large prime p. We state it as follows. Given α ∈ (Z/pZ) and β ∈ 〈α〉
(that is, β can be generated by α), find any integer x such that αx = β

Using our newfound addition of points on elliptic curves we can formulate the elliptic curve
discrete logarithm problem. The problem is that given a prime p, an elliptic curve E defined
over Fp and the points P,Q ∈ E(Fp) (assuming that Q is a multiple of P ), find an integer m so
that [m]P = Q. This problem is the basis for elliptic curve cryptography (ECC), an encryption
method that has existed for nearly four decades [36] [37].

Also, Lenstra Elliptic Curve factorisation [39, Section 4.4] [47], can factor positive integers
n. Let n denote a number that is not prime (checking primality is a relatively cheap operation
compared to factoring), the algorithm starts by finding an elliptic curve over Z/nZ and a point
P ∈ E(Z/nZ). Now, it will continue to find multiples of the point P , until, using the addition
formulas from Section 3.2.2, we try to invert a residue class in Z/nZ that has no inverse (such
residue classes exist as n is not prime). We can then retrieve a factor of n using the residue class
that has no inverse in Z/nZ.



Chapter 4

Morphisms of Elliptic Curves

In order to understand the algorithm that drives CSIDH, we must first take a look at mappings
between two elliptic curves called morphisms.

In this chapter we will first look at a special type of morphism of elliptic curves called an
isogeny. Afterwards, we discuss isomorphism classes of elliptic curves. Intertwining the theory
from Chapter 2 allows us to examine the structure of the endomorphism ring of an elliptic curve.
It also allows us to define the action of ideal classes on isomorphism classes of elliptic curves, a
concept that gives rise to isogeny graphs, a helpful visualisation for isogeny-based cryptography.

The principles covered in this chapter are crucial to understanding CSIDH, linking all previ-
ously discussed theories to provide a thorough background on the algorithm introduced in the
next chapter.

Warning. Unless stated otherwise, all elliptic curves in this chapter will be defined over the
finite field Fp with p > 3 a prime number.

4.1 Isogenies of Elliptic Curves
Defining an isogeny is typically done using algebraic geometry. However, we take a more implicit
route to avoid some of this theory. At each step, we try to provide proof that our definitions are
equivalent to the definitions using more sophisticated algebraic geometry. Typical definitions of
isogenies can be found in [48, Chapter 5, Section 9.6], [49], and [40, Chapters I, II, Section III.4].

Theorem 4.1. Two elliptic curves E1 and E2 over a finite field Fp are isogenous over Fp if and
only if #E1(Fp) = #E2(Fp).

Proof. See [50], [48, Theorem 9.7.4] (only for sufficiency), or [40, Exercise 5.4].

Definition 4.2. Let E1 and E2 be elliptic curves of the form y2 = x3 + ax2 + bx + c with
a, b, c ∈ Fp. If E1 is isogenous to E2, i.e., #E1(Fp) = #E2(Fp), then there exists a map
ϕ : E1 → E2 satisfying ϕ(O) = O called a non-zero isogeny from E1 to E2. Every isogeny is
either the zero isogeny, mapping each point P ∈ E1 to O ∈ E2, or a non-zero isogeny between
isogenous elliptic curves†. Every non-zero isogeny is can be expressed as a rational map

ϕ(x, y) =

(
f(x)

k(x)
,
g(x)

h(x)
y

)
, (4.1)

where f, k, g, h ∈ Fp[x], gcd(f, k) = 1, and gcd(g, h) = 1 (Definition 1.11). A proof of this can
be found in [49, Lemma 4.26] and [48, Lemma 9.6.12]. The kernel of any isogeny ϕ : E1 → E2 is
denoted as ker(ϕ) and defined as ker(ϕ) = {P ∈ E1 : ϕ(P ) = O}.

†In other literature this is said to be an isogeny defined over Fp. Since all isogenies in this thesis will be
defined over Fp, we just call them isogenies.

41
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Theorem 4.3. Let E1 be isogenous to E2 and let ϕ : E1 → E2 be a non-zero isogeny given by
equation (4.1). Then, any point (x0 : y0 : 1) ∈ E1 is in the kernel of ϕ if and only if k(x0) = 0

Proof. This follows directly from [49, Corollary 4.28].

Definition 4.4. The kernel polynomial of a non-zero isogeny is k(x) ∈ Fp[x] from equation (4.1)
divided by its lead coefficient (in order for the kernel polynomial to become a monic polynomial).
We note that the kernel polynomial is uniquely determined [49, p. 9].

Let E1 : y2 = x3+3x2+2x and E2 : y2 = x3+3x2+6x+4 be elliptic curves defined over
the finite field F7. As #E1(F7) = #E2(F7) = 8, we know that E1 and E2 are isogenous.
Therefore, there exists an isogeny ϕ : E1 → E2 between them. In fact, such an isogeny is
given by the rational map

ϕ(x, y) =

(
x2 + 2

x
,
x2y − 2y

x2

)
.

Take P = (4, 1) ∈ E1, then ϕ(P ) =
(
18
4 ,

14
16

)
= (1, 0) and indeed (1, 0) ∈ E2. If we

would have taken P = (0, 0) ∈ E1, then ϕ(P ) = O ∈ E2. In fact, one can show that
kerϕ = {O, P}.
To show that the isogeny ϕ is not one-to-one note that both (3, 2) ∈ E1 and (3, 5) ∈ E1

map to (6, 0) ∈ E2. Furthermore, no P ∈ E1(F7) maps to (2, 1) ∈ E2(F7). However,
P = (6s+ 5, 4s+ 2) ∈ E1(F72), where both the x and the y coordinate of P are elements
of F72 := F7[s]/(s

2 + 6s+ 3) satisfies

ϕ(6s+ 5, 4s+ 2) =

(
(6s+ 5)2 + 2

6s+ 5
,
(6s+ 5)2 − 2

(6s+ 5)2
(4s+ 2)

)
=
(
6s+ 5 + 2(4s+ 2), (1− 2(4s+ 2)2)(4s+ 2)

)
= (2, (1− 2(4s+ 5))(4s+ 2))

= (2, 1)

by the long division from Section 1.2 and the relation (6s+ 5)−1 = 4s+ 2.

4.2 Isomorphism Classes of Elliptic Curves
Definition 4.5. Let E1 and E2 be elliptic curves defined over Fp. We say that E1 and E2 are
Fp-isomorphic if there exist isogenies ϕ1 : E1 → E2 and ϕ2 : E2 → E1 such that for every point
P ∈ E1 we have that ϕ2(ϕ1(P )) = P , i.e., ϕ2 ◦ ϕ1 is the identity map. The isogenies ϕ1 and
ϕ2 are then called Fp-isomorphisms. Define a relation ∼= on arbitrary elliptic curves E1 and
E2, such that E1

∼= E2 if and only if E1 and E2 are Fp-isomorphic (this notation will come
back later). Then this relation forms an equivalence relation. The equivalence classes are called
Fp-isomorphism classes of elliptic curves.

Define the elliptic curve E1 : y2 = x3 + 2x + 1 over F7 and the elliptic curve E2 : y2 =
(x+1)3+2(x+1)+1 = x3+3x2+5x+4 over F7. These curves are isogenous, so that there
exists an isogeny between them. In fact, ϕ1 : E1 → E2 given by ϕ2(x, y) = (x+ 1, y) and
ϕ2 : E2 → E1 given by ϕ2(x, y) = (x− 1, y) are two isogenies. We can see that for every
point P ∈ E1 we have that ϕ2(ϕ1(P )) = P , proving that E1 and E2 are Fp-isomorphic,
so that E1 and E2 are in the same Fp-isomorphism class.
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Besides Fp-isomorphisms, there also exist Fp-isomorphisms. Before we state when two curves
are Fp-ismorphic in Theorem 4.7, we first look at the j-invariant of an elliptic curve.

Definition 4.6. Let E : y2 = x3 + ax2 + bx+ c be an elliptic curve with a, b, c ∈ Fp. We define
b2 = 4a, b4 = 2b, b6 = 4c, and b8 = 1

4 (b2b6 − b24). The j-invariant of the elliptic curve equals

j(E) =
(b22 − 24b4)

3

9b2b4b6 − b22b8 − 8b34 − 27b26
∈ Fp.

Theorem 4.7. Two elliptic curves E1 and E2 are Fp-isomorphic (equivalently, there exists an
Fp-isormorphism between them) if and only if their j-invariants are equal, that is j(E1) = j(E2).

Proof. A proof of this theorem is listed in [40, III.1.4(b)].

Theorem 4.8. An elliptic curve E′ : y2 = x3 + A′x + B′ in short Weierstrass form is Fp-
isomorphic to the elliptic curve E : y2 = x3 + Ax + B if and only if there exists a u ∈ F∗

p such
that A′ = u4A and B′ = u6B. Moreover, two elliptic curves that are Fp-isomorphic are also
Fp-isomorphic, the converse does not hold in general.

Proof. A proof of this theorem can be found in [51, Theorems 2.2.2-2.2.4].

Let E1 : y2 = x3 + 2x + 1 be an elliptic curve defined over F5. Similarly, let E2 : y2 =
x3+3x+2 be an elliptic curve defined over F5. We have that j(E1) ≡ j(E2) ≡ 4 (mod 5),
so that the exists an F5-isomorphism between E1 and E2 from Theorem 4.7. However,
they are not isomorphic due to Theorem 4.8 as there does not exist a u ∈ F∗

5 such that
3 ≡ 2u4 (mod 5) and 2 ≡ u6 (mod 5).

4.3 Montgomery Curves
A Montgomery curve is an elliptic curve over a finite field Fp with p > 3, of the form y2 =
x3 +Mx2 + x for some M ∈ Fp. Here, M is called the Montgomery coefficient of the elliptic
curve. In CSIDH [1] (which is discussed in Section 5.2) these curves are extensively used as they
make calculations easier. Moreover, CSIDH only works with Fp-isomorphism classes that contain
exactly one Montgomery curve [1, p. 5]; this allows them to denote an entire Fp-isomorphism
class by the Montgomery coefficient of that Montgomery curve.

The curve E : y2 = x3+2x+1 defined over F11 is isomorphic to the curve y2 = x3+x2+x
in Montgomery form with a Montgomery coefficient of 1. CSIDH thus denotes the F11-
isomorphism class containing E by 1.

An additional use of Montgomery curves for cryptography is that the x-coordinate of [k]P
for some k ∈ Z>0 and point P on the curve can be found significantly faster than for normal
elliptic curves [1, p. 26]. This fact is used extensively in CSIDH to speed up computations in
their encryption scheme.

4.4 The Endomorphism Ring
In the previous sections we talked about two elliptic curves being isogenous and isomorphic. In
this section we will talk about the mappings that map an elliptic curve to itself.
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Definition 4.9. Let E be an elliptic curve. An Fp-endomorphism is an isogeny ϕ from E to
E. The set of all endomorphisms of the elliptic curves is called the Fp-endomorphism ring of E,
and is denoted as EndFp

(E). Let ϕ and ψ denote Fp-endomorphisms from E to E. Then the Fp-
endomorphism ring forms a ring under the addition operation (ϕ+ψ)(P ) = ϕ(P )+ψ(P ) and the
multiplication operation (ϕ ·ψ)(P ) = ϕ(ψ(P )), where P is any point in E [40, Proposition 4.2(c)].

Remark. In this thesis we will only consider Fp-endomorphisms, therefore, we will call them endo-
morphisms from now on. We will also define End(E) := EndFp(E) and call the Fp-endomorphism
ring of E the endomorphism ring of E.

Let E1 and E2 be elliptic curves and let [m] : E1 → E2 with m ∈ Z denote the multiplication-
by-m map sending each point P 7→ [m]P , i.e., adding each point to itself a total of m times.
We certainly have that the multiplication-by-1 map sends E1 to itself, i.e., [1] : E1 → E1 is
an endomorphism. Since [1] ∈ End(E1), we can use the addition operation defined on the
endomorphism ring to see that ([1] + [1])(P ) = [1]P + [1]P = [2]P for any point P ∈ E1. Thus,
the multiplication-by-2 map, [2], is also an endomorphism. Likewise, one can show that every
multiplication-by-m map is an endomorphism.

Let E : y2 = x3 + 2x + 1 be an elliptic curve defined over F7. The isogeny ϕ : E → E
defined by

ϕ(x, y) =

(
x4 − x

−3x3 − 3
,
x6 − x3 − 1

x6 + 2x3 + 1
y

)
is an endomorphism mapping each point P to [2]P by the formulas from Section 3.2.2.

Definition 4.10. Let p > 3 be a prime and let E be an elliptic curve over Fp. The pth power
Frobenius map π : E → E defined by the rational map (x, y) 7→ (xp, yp) is an endomorphism.
Therefore, we call this map the pth power Frobenius endomorphism of E.

Let E be an elliptic curve over Fp. As we have xp = x for all x ∈ Fp (Theorem 5.3), all
points in E(Fp) are fixed by the pth power Frobenius endomorphism. However, the pth power
Frobenius endomorphism permutes all points in E that are not in E(Fp).

Theorem 4.11. Let E be an elliptic curve, and let G be a finite subgroup (i.e., a subgroup that is
a finite group) of the points on E stable under applying the pth power Frobenius endomorphism π,
i.e., for each P ∈ G we have π(P ) ∈ G. There is a unique elliptic curve E′ up to Fp-isomorphism
and an isogeny ϕ : E → E′ satisfying kerϕ = G.

Proof. See Proposition III.4.12 and Exercise 3.13(e) of [40]. Also, see [48, Theorem 9.6.19] or [1,
Lemma 6].

Remark. For a given curve E and subgroup G, Velu [52] found an algorithm that computes
explicit formulas for the curve E′ and the rational maps of the isogeny ϕ : E → E′.
Remark. Note that the kernel of the pth power Frobenius endomorphism is {O}, a characteristic
that it shares with other (purely) inseparable isogenies. On the contrary, separable isogenies are
characterised by their kernel (not uniquely). In following sections we use Theorem 4.11 together
with Velu’s formulas [52] to convert a non-trivial kernel back into a separable isogeny. Although
the separable isogeny we retrieve is not unique, our point of interest, the codomain of the isogeny,
is unique up to Fp-isomorphism, which is all we need. Therefore, inseparable isogenies are not
very relevant to our use case and separability is not discussed formally in this thesis. For more
information regarding the subject the reader is referred to [40, Section II.2] or [48, Sections 9.6,
9.7]. The fact that the kernel of our isogenies is non-trivial, can be seen from [48, Corollary 9.7.3]
and [40, Corollaries III.5.3-III.5.5].

Definition 4.12. The trace of the pth power Frobenius endomorphism π of an elliptic curve E
is the integer t satisfying #E(Fp) = p+ 1− t. We often call t the trace of Frobenius of E.
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Theorem 4.13. Let E be an elliptic curve over Fp. The pth power Frobenius endomorphism π
over E satisfies π2 − [t]π+ [p] = 0, that is, the composition of these functions is the zero isogeny.

Proof. See [40, Theorem V.2.3.1(b)].

Another way of stating this theorem is that for any point P in E(Fp) (thus even the ones
defined over the algebraic closure of Fp) we know that π(π(P ))− [t]π(P ) + [p]P = O as noted in
[53, p. 6].

Let E : y2 = x3+3x+2 be an elliptic curve defined over F5 and let F52 := F5[s]/(s
2+4s+2).

Furthermore, we define the point P = (s+ 4, s+ 3) ∈ E(F52).
For all points Q := (Qx, Qy) ∈ E(F5) we have π(Q) = (Q5

x, Q
5
y) = Q ∈ E(F5) by Fermat’s

little theorem (Theorem 5.3). However, for our point P = (s+4, s+3) ∈ E(F52) we have
that π(P ) = (4s, 4s+ 4) 6= P , and that π(P ) = (4s, 4s+ 4) ∈ E(F52). We apply π again
to give π2(P ) := π(π(P )), essentially performing the map (x, y) 7→ (x5

2

, y5
2

), to find that
π2(P ) = (s + 4, s + 3) = P . In fact, one can show that for any x ∈ F52 we have that
x5

2 ≡ x, which implies that all points in E(F52) are fixed by applying π2.
Now, Theorem 4.13 states that π2− [t]π+[5] = 0 must hold. For any point P ∈ E(F52) we
already know that π2(P ) = P . We will verify the equation for our point P := (s+4, s+3) ∈
E(F52) by checking whether π(π(P ))− [t]π(P ) + [5]P = O holds. The trace of Frobenius
of E equals 1 as #E(Fp) = 5 = 5 + 1 − 1. Therefore, the equation reduces to checking
whether P − π(P ) + [5]P = O. And indeed [5 + 1]P = (4s, 4s+4) = π(P ). We have thus
shown that Theorem 4.13 holds for our choice of P ∈ E(F5).

Definition 4.14. An elliptic curve E defined over Fp is called supersingular if and only if the
trace of Frobenius equals 0, otherwise it is called ordinary [54, Theorem 13.4]. Furthermore, the
trace of Frobenius is preserved under non-zero isogenies by Theorem 4.1. Therefore, supersingular
elliptic curves are never isogenous to ordinary elliptic curves.

The distinction between supersingular and ordinary elliptic curves is important as CSIDH
only uses supersingular elliptic curves in their encryption scheme.

The polynomial x2 − tx + p ∈ Z[x] is called the Frobenius polynomial (remember that π
satisfies π2 − [t]π + [p] = 0). From Hasse’s theorem [55] we know that |t| ≤ 2

√
p, and therefore

t2−4p < 0. Solving the Frobenius polynomial shows that its roots are imaginary numbers. Those
roots can thus extend the rationals Q. Building on this, we define the number field K = Q(π),
where π is a root of the Frobenius polynomial. Previously we saw that every multiplication-by-
m map for m ∈ Z is an endomorphism, likewise, the pth power Frobenius endomorphism π of
an elliptic curve is also an endomorphism. Thus, we know that the order Z[π] ⊆ End(E) for
arbitrary elliptic curves E over Fp. Using [54, Theorems 13.6-13.8], we find that ordinary elliptic
curves satisfy Z[π] ⊆ End(E) ⊆ OK , implying that End(E) is an order in the number field K.

4.5 Ideals Acting on Elliptic Curves
This section starts by introducing the concept of ideals acting on Fp-isomorphism classes of
elliptic curves; the properties and consequences of these definitions along with their proofs can
be found in Section 4.5.1. A visualisation of the action of ideals on Fp-isomorphism classes of
elliptic curves can be found in Section 4.5.2, which introduces the concept of isogeny graphs.

Choose an elliptic curve E defined over some fixed finite field Fp for p > 3 prime. Calculate the
trace t of the pth power Frobenius endomorphism. Let π be a root of the Frobenius polynomial
x2 − tx+ p and define the imaginary quadratic number field K = Q(π).

Let A be a subring of End(E), that is, A ⊆ End(E). Then, any α ∈ A represents an
endomorphism of the elliptic curve E, thus α : E → E. Using α we can map every point P ∈ E
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to the point α(P ) ∈ E. In particular, if some α ∈ A can be written in the form a+bπ for a, b ∈ Z,
that is, α = a+ bπ ∈ Z[π], this sends P to the point α(P ) = (a+ bπ)(P ) = [a]P + [b]π(P ).
Definition 4.15. Let a be a non-zero ideal of Z[π]. We define aE to be the Fp-isomorphism
class of elliptic curves determined by the codomain of an isogeny ϕ : E → aE satisfying

kerϕ = {P ∈ E : α(P ) = O for all α ∈ a}.

The existence of such an isogeny where the codomain is unique up to Fp-isomorphism is guaran-
teed by Theorem 4.17. Note that ϕ maps precisely the points P to the point at infinity which
all elements of the ideal a map to the point at infinity. In fact, we only need to verify that the
generators of a map P to the point at infinity (as the endomorphism ring is a ring).

As we will see in Lemma 4.20, all ideals in the same ideal class (assuming that Z[π] = OK)
give the same Fp-isomorphism class. Therefore, instead of speaking of the action of an ideal a
on an Fp-isomorphism class, we often speak of the action of an ideal class on Fp-isomorphism
classes of elliptic curves, denoting aE as [a]E.

Let E be the elliptic curve E : y2 = x3+x+6 over F7. Then #E(F7) = 11 = 7+1− (−3),
implying that t = −3. Our Frobenius polynomial becomes x2 + 3x+ 7 = 0.
Take K = Q(π) where π is the root of x2+3x+7. The ideal (3) is inert in K as x2+3x+7
is irreducible in F3[x].
We want to apply the ideal a = (3) to the elliptic curve E to get aE. To do this we aspire
to find the set kerϕ = {P ∈ E : [3]P = O} as 3 ∈ a generates the ideal a. The isogeny ϕ
can be found by evaluating:

1 sage: E = EllipticCurve(GF(7), [1, 6])
2 sage: E.isogeny(E.scalar_multiplication(3).kernel_polynomial())

It turns out that the codomain of this isogeny is the elliptic curve aE : y2 = x3 + 4x+ 6.
Note that the elliptic curve aE is isomorphic to the elliptic curve E due to Theorem 4.8
with u = 3. Since OK is a principal ideal domain (where only one ideal class exists) and
Z[π] = OK we can see from Lemma 4.20 that for all ideals a of Z[π], the curve E will be
Fp-isomorphic to aE as the ideal classes [(1)] and [a] are identical.

Define E : y2 = x3 + x + 3 over F7, the Frobenius polynomial is x2 − 2x + 7 = 0. Let π
be a root of x2 +2x+7 (and denote the pth power Frobenius endomorphism) and define
the order Z[π] of Q(π). We have that (2) factors in Z[π] as (2) = (2, π − 1)2 = p22. This
example aims to find an elliptic curve E′ in the same Fp-isomorphism class as p2E. To
this end, we will compute the intersection of the two sets S2 := {P ∈ E : [2]P = O}
and Sπ−1 := {P ∈ E : π(P ) − P = O} as for the isogeny ϕ : E → p2E we have that
kerϕ = S2 ∩ Sπ−1.
First, we compute Sπ−1, for any P ∈ E we see that π(P ) − P = O is equivalent to
π(P ) = P . Since P must be fixed by applying π, we see that Sπ−1 = E(Fp). Therefore,
kerϕ = {P ∈ E(Fp) : [2]P = O}. All points in kerϕ are thus Fp-rational and roots of
the kernel polynomial of the multiplication-by-2 map (Theorem 4.3). Using the following
code, we find that the kernel polynomial factors (into irreducible polynomials) as (x +
2)(x2 + 5x+ 5).

1 sage: E = EllipticCurve(GF(7), [1, 3])
2 sage: E.scalar_multiplication(2).kernel_polynomial().factor()

Since x+ 2 ∈ Fp[x] is the only factor of degree 1 (and therefore the only one providing a
root in Fp) we get that the kernel polynomial of ϕ is x+2. And hence p2E, the codomain
of ϕ, can be found by the following code:
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1 sage: E = EllipticCurve(GF(7), [1, 3])
2 sage: E.isogeny(x+2)

Which returns that E′ ∼= p2E : y2 = x3 + 6x+ 3. The curve E′ ∼= p2E is not isomorphic
to E as p2 is a non-principal ideal.

4.5.1 Properties of Ideals Acting on Elliptic Curves
This subsection provides proofs for the action of ideals on elliptic curves. The goal is to shed
light on some properties of this action so that the reader (especially one well versed in group
actions) can acquire a better understanding of what is possible with these actions. Furthermore,
this subsection provides a rigorous foundation which is used to define the CSIDH encryption
scheme more abstractly in the next chapter.

In the remainder of this subsection we let E denote an elliptic curve defined over a finite field
Fp for some fixed prime p > 3. Also, we let π denote the pth power Frobenius endomorphism of
E as well as the root of the Frobenius polynomial x2 − tx+ p and define the number field Q(π)
with the order Z[π].
Lemma 4.16. Let E and E′ denote elliptic curves over Fp. Let ϕ : E → E′ be an isogeny
sending E to E′. Let π denote the pth power Frobenius endomorphism of E. Similarly, let π′

denote the pth power Frobenius endomorphism of E′. Then we have ϕ ◦ π = π′ ◦ ϕ.
Proof. First, if ϕ is the zero isogeny, this equation holds trivially. Otherwise, by Definition 4.2,
ϕ can be expressed as a rational map

ϕ(x, y) =

(
f(x)

k(x)
,
g(x)

h(x)
y

)
,

with f, k, g, h ∈ Fp[x].
By the Freshman’s dream [56, Example 9.42], we have that f(xp) = f(x)p for any polynomial

f ∈ Fp[x], now, ϕ ◦ π is given by the rational map

ϕ(xp, yp) =

(
f(xp)

k(xp)
,
g(xp)

h(xp)
yp
)

=

(
f(x)p

k(x)p
,
g(x)p

h(x)p
yp
)
.

which equals the rational map of π′ ◦ ϕ.

Theorem 4.17. There is a unique elliptic curve E′ up to Fp-isomorphism and an isogeny
ϕ : E → E′ satisfying kerϕ = {P ∈ E : α(P ) = O for all α ∈ a} for any non-zero ideal a of
Z[π].
Proof. We need to show that the kernel of the isogeny ϕ as defined in Definition 4.15 satisfies
all conditions of G in Theorem 4.11. Let G denote the kernel of ϕ, we must thus show that G is
a finite (follows from the fact that a is non-zero) subgroup of the points on E such that for all
P ∈ G we have that π(P ) ∈ G, where π denotes the pth power Frobenius endomorphism.

First off, let α denote an arbitrary element of a non-zero ideal a of Z[π]. Now, G is naturally
a subset of the points on E. Furthermore, G is a subgroup of E, since if P ∈ G and Q ∈ G,
then α(P ) = α(Q) = O = α(P ) + α(Q) = α(P + Q), such that P + Q ∈ G, showing that the
+-operation of E restricts to G (Definition 0.2). Next, for all P ∈ G we have that α(P ) = O,
such that O = α(P ) = π(α(P )) = α(π(P )), giving that π(P ) ∈ G.

For any elliptic curve E′ isogenous to E, we have that #E′(Fp) = #E(Fp) by Theorem 4.1.
Therefore, the Frobenius polynomial of E will equal the Frobenius polynomial of E′. Hence, we
can not only identify the order Z[π] as a subring of End(E) (where π denotes the pth power
Frobenius endomorphism of E), but also as a subring of End(E′) (this time π denotes the pth
power Frobenius endomorphism of E′).
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Theorem 4.18. Let a, b ⊆ Z[π] be non-zero ideals. Using the notation from Definition 4.15 we
have that (a · b)E, a(bE), and b(aE), all belong to the same Fp-isomorphism class. That is, we
can define a left group action where the group of ideals acts on a set of Fp-isomorphism classes
of elliptic curves over Fp.

Proof. For any elliptic curve E′ isogenous to E, and any non-zero ideal c of Z[π], after identifying
π with the pth power Frobenius endomorphism of E′, we get an elliptic curve cE′ and an isogeny
ϕc : E

′ → cE′ associated with c. Also, let the symbol ∀ denote “for all”, we have

ker(ϕa ◦ ϕb) = {P ∈ E : ϕa(ϕb(P )) = O}
= {P ∈ E : (α ◦ ϕb)(P ) = O, ∀α ∈ a}
= {P ∈ E : (ϕb ◦ α)(P ) = O, ∀α ∈ a}
= {P ∈ E : α(P ) ∈ ker(ϕb), ∀α ∈ a}
= {P ∈ E : β(α(P )) = O, ∀α ∈ a, ∀β ∈ b}
= {P ∈ E : (α · β)(P ) = O, ∀α ∈ a, ∀β ∈ b}
= {P ∈ E : γ(P ) = O, ∀γ ∈ (a · b)}
= ker(ϕa·b).

Therefore, first applying ϕb : E → bE and then ϕa : bE → a(bE) is the same as applying
ϕa·b : E → (a · b)E. For the trivial ideal (1) we know that (1)E = E as it sends all points P ∈ E
to themselves. Since a · b = b · a, the theorem follows.

Lemma 4.19. Let a ⊆ Z[π] be a non-zero principal ideal. We have E ∼= aE.

Proof. Let α denote the generator of the principal ideal a, i.e., a = (α). Let ϕ : E → aE be
the isogeny with kernel {P ∈ E : β(P ) = O for all β ∈ a}. This kernel is identical to the set
{P ∈ E : α(P ) = O}. The endomorphism α has the same kernel as the isogeny ϕ, proving that
the codomain of ϕ is Fp-isomorphic to E.

Lemma 4.20. Let a, b ⊆ Z[π] be non-zero ideals. If [a] = [b], that is, a and b belong to the same
ideal class, we have aE ∼= bE.

Proof. Assume that there are non-zero α, β ∈ Z[π] such that (α)a = (β)b. For arbitrary elliptic
curves E we then have that ((α)a)E ∼= ((β)b)E. From Theorem 4.18 we deduce that (α)(aE) ∼=
(β)(bE) must hold. Now Lemma 4.19 gives that aE ∼= bE.

It rests us to prove our original assumption. First assume that it is false, thus, for any non-
zero α, β ∈ Z[π] we never have (α)a = (β)b. In that case [(α)a] 6= [(β)b], which would imply that
[(α)] + [a] 6= [(β)] + [b] and consequently [a] 6= [b], which is a contradiction.

Theorem 4.21. The action of the group of ideal classes Cl(Z[π]) on a set of Fp-isomorphism
classes of elliptic curves over Fp is a group action. Therefore, principal ideals a of Z[π] satisfy
[a]E ∼= E, and we have that [a · b]E ∼= [a]([b]E) ∼= [b]([a]E) holds for arbitrary non-zero ideals
a, b of Z[π].

Proof. From Lemma 4.19 we already know that the identity element of Cl(Z[π]), the set of
principal ideals, acts on E in a similar fashion as the ideal (1) does, namely trivially. From
Theorem 4.18 and Lemma 4.20 we deduce that [a · b]E ∼= [a]([b]E) ∼= [b]([a]E). Therefore,
Cl(Z[π]) indeed defines a group action on a set of isomorphism classes of elliptic curves defined
over Fp.

Remember that for supersingular elliptic curves over Fp (which we defined in Definition 4.14)
the trace of Frobenius equals 0 (as long as p > 3 is prime). Therefore, the Frobenius polynomial
of such an elliptic curve is of the form x2 + p ∈ Z[x] and Z[π] = Z[

√
−p].

In the special case of Fp-isomorphism classes of supersingular elliptic curves defined over Fp

with p ≡ 1 (mod 4), Theorem 4.21 translates to a free and transitive [57, Definitions 3.6, 3.8]
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group action. That is, for two supersingular elliptic curves E1, E2 there exists an ideal a such
that [a]E1

∼= E2, which implies transitivity, and if [a]E1
∼= E1 then the ideal class [a] must be

trivial, which implies that the action must be free. In other words, the action of Cl(Q(
√
−p)) on

the set of isomorphism classes of all supersingular curves defined over Fp is free and transitive.
This fact, along with its proof, can be found in [1, Theorem 7].

4.5.2 Isogeny Graphs
Isogeny graphs help with visualising the effect of applying ideals to elliptic curves. In this
subsection we will briefly look at an example of an isogeny graph and describe what it signifies.

For this example, we will look at elliptic curves defined over F59. For any A ∈ F59, let the
curve EA denote the elliptic curve with Montgomery coefficient A, i.e., EA : y2 = x3 + Ax2 + x.
We will look at the isogeny graph that results from applying the ideals over 3 and 5 repetitively
to the starting curve E0 : y2 = x3 + x, see Figure 4.1.
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Figure 4.1: Isogeny graphs with starting curve defined by E0 : y2 = x3 + x over F59. Nodes
in the isogeny graph represent F59-isomorphism classes of supersingular elliptic curves, denoted
by the unique Montgomery curve contained in the class. Edges in the graph represent isogenies
defined by the actions of the ideals over {3, 5}. The figure on the left-hand side gives a complete
overview of the mappings that some ideals perform. The figure on the right-hand side is a
simplified version, merging directional edges of each ideal with its conjugate.

Note that the Frobenius polynomial of E0, which is supersingular, equals x2 +59. Therefore,
we define K = Q(

√
−59). Let α =

√
−59, and define the order R = Z[α] of K. Then, (3) factors

in R as (3, α− 1)(3, α+ 1) = p3q3 and (5) = (5, α− 1)(5, α+ 1) = p5q5.
Remark. After applying an ideal to an elliptic curve E defined over Fq, the Frobenius polynomial
does not change. This is due to the fact that applying an ideal corresponds to an isogeny and
Theorem 4.1 states that the resulting curve E′ satisfies #E(Fq) = #E′(Fq), which gives the
same trace of Frobenius.

As an example, applying the ideal p3 to E0 gives a curve isomorphic to E29, i.e., [p3]E0 = E29.
Applying p3 to E29 gives E31, and so on until we get back to the original curve E0. A more
detailed view is given in Figure 4.1.



Chapter 5

Encryption Schemes

In today’s world, secure communication has become paramount, with privacy concerns escalating.
This chapter starts by delving into the concept of key exchange (in particular Diffie-Hellman Key
Exchange) and how it enables two parties to establish a shared secret. Building on this foundation,
we set the stage for understanding the intricacies of the CSIDH algorithm, the culmination of
this thesis. Elaborating on this algorithm, we present a variant of CSIDH in Section 5.3, aimed
at sparking further exploration and research in this area of cryptography.

5.1 Diffie-Hellman Key Exchange
Suppose Alice and Bob, two people living on different sides of the Earth, want to share sensitive
information with each other. Ideally, they wish to send each other messages containing this
information securely. However, Eve can intercept and read the contents of that message. This
is something that Alice and Bob want to avoid. The Diffie-Hellman key exchange describes how,
even if all messages get intercepted, only Alice and Bob are able to read its contents.

First of all, Alice and Bob need to agree on the algorithm they are going to use, an example of
applying such an algorithm is listed below. Once they have done this, they can agree on initialisers
of the algorithm called the public parameters of the key exchange. Alice then computes a private
key that she keeps to herself, which Bob does as well. Combining public parameters and private
key, the algorithm provides a public key that Alice sends (via public communication channels)
to Bob. Bob also uses his private key and the algorithm to send a public key to Alice. Alice
receives Bob’s public key and Bob receives Alice’s public key. The second stage of the algorithm
now uses this public key in combination with their own private key to get to a shared secret.
Shared secrets are useful, since only Alice and Bob know this secret, even if all messages get
intercepted. Alice and Bob can use this shared secret to encrypt their sensitive data, which, as
long as the shared secret stays a secret to interceptors, can only be read by Alice and Bob.

Suppose Alice and Bob want to exchange sensitive information with each other. To this
end, they want to establish a shared secret. See Figure 5.1.
Alice and Bob create a public channel on which they can send messages. On it, they
agree to use the Finite Field Diffie-Hellman algorithm to reach a shared secret. To set
up their system they agree that they will use the modulus p = 81233 and the base
g = (3 mod p) ∈ Fp (nowadays, p is typically chosen to be around 23200 [58]).
Now Alice creates a random private key, which must be an integer < 81233 according to
the algorithm. She chooses a = 75629. Likewise Bob generates the private key b = 26921.
Following the algorithm they compute their public using their private key, Alice computes
A := ga = (21836 mod p). Bob computes B := gb = (63093 mod p).

50
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Suppose Alice wants to establish a shared secret with Bob,
to do this she initiates the Diffie-Hellman Key Exchange.

Alice Bob

“I’ll use the Finite Field
Diffie-Hellman scheme with

p = 81233 and g = (3 mod p).”

Randomly generates a private key
a = 75629

Randomly generates a private key
b = 26921

Computes her public key
A := ga = (21836 mod p)

Computes his public key
B := gb = (63093 mod p)

“A = (21836 mod p)”
“B = (63093 mod p)”

Computes the shared secret
S := Ba = (55014 mod p)

Computes the shared secret
S := Ab = (55014 mod p)

Alice uses the shared secret S = (55014 mod p) to encrypt the message she wants to send
(e.g., using AES). Afterwards, she sends the encrypted message to Bob. As he also computes

S = (55014 mod p), he can decrypt the message.

public parameters

public keys

Figure 5.1: An overview of the Diffie-Hellman Key Exchange from the example. Here, an arrow
represents sending data across a (public) channel.

At this point, Eve, who intercepted all their messages, only knows which algorithm Alice
and Bob use, together with initialisers p = 81233 and g = (3 mod p).
Bob now sends his result B to Alice and Alice sends A to Bob.
Eve is happy, she intercepts the message and knows that A = (21836 mod p) and B =
(63093 mod p). However, she remains oblivious to the values of a and b which are presumed
to be difficult to figure out (if p were a much larger prime) by herself.
According to the algorithm Alice now computes Sa := Ba = (55014 mod p). Bob com-
putes Sb := Ab = (55014 mod p). We know that Sa = Sb holds as (ga)b = (gb)a for a and
b integers and g ∈ Fp. Thus, Alice and Bob have a shared secret S = (55014 mod p).
Eve knows that A = (21836 mod p) and that B = (63093 mod p), but if p were a much
larger prime it would be difficult to find the shared secret S without the private keys a
or b.
Now, Alice can use the shared secret S = (55014 mod p) and a different encryption scheme
like poly-alphabetic substitution or AES encryption to encrypt her message. She can then
send the encrypted message to Bob. He can then decrypt the message by using the shared
secret.

To develop a new encryption scheme for the Diffie-Hellman key exchange protocol one must
first specify how to generate its public parameters and private keys. The first algorithm of the
encryption scheme is then applied to the public parameters and private keys to compute the
public keys. The computed public key is then exchanged with the other person. Upon receiving
the key, the person uses it as an input for the second stage of the algorithm which finds a shared
secret. If a shared secret is obtained the encryption scheme is finalised.

Depending on the strength of the encryption the shared secret is difficult or extremely difficult
for an eavesdropper/interceptor Eve to figure out. The strength of certain encryption schemes
is not discussed further in this thesis.
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5.2 CSIDH

This section describes CSIDH [1] and their encryption scheme. In Table 5.1 a small example of
the encryption scheme is worked out.

Initialisation. To start, a prime of the form p = 4ℓ1 · ℓ2 · · · ℓn − 1 is needed where ℓi are
small distinct odd primes and n ∈ Z≥1. CSIDH used a 512-bit prime p [1, Section 8.1],
i.e., a prime p satisfying 2511 ≤ p < 2512. This prime is a public parameter of the
encryption scheme. We also define the starting curve to be the (supersingular) elliptic
curve E0 : y2 = x3 + x over Fp and define the order R = Z[π] of Q(π) obtained by
adjoining a root π of x2 + p to Q.
Private Key Generation. The private key is an n-tuple (e1, . . . , en) of integers repre-
senting exponents, each sampled randomly from a range {−m, . . . ,m} where 2m + 1 ≥
n
√
#Cl(R).

As x2 + p = x2 − 1 = (x − 1)(x + 1) in Fℓi [x] we get that (ℓi) factors in R as lili where
li := (ℓi, π − 1) and li := (ℓi, π + 1).
Using the n-tuple we define the ideal class [a] = [le11 · · · lenn ] ∈ Cl(R), where [l−1

i ] := [li].
Now, Alice generates a private key and applies [a] to the starting curve E0 and finds
an Fp-isomorphism class containing the Montgomery curve (Section 4.3) equal to EA =
[a]E0 : y2 = x3+Ax2+x for some A ∈ Fp. Bob does the same by generating a private key
and applying its respective ideal class to the starting curve, obtaining a different curve
EB . At this point Alice and Bob send their values of A and B to each other over a public
channel.
Computing the Shared Secret. Now Alice computes ESA

:= [a]EB and Bob computes
ESB

:= [b]EA. Applying ideal classes is commutative (as can be seen in Figure 4.1 and
from Theorem 4.18 or Theorem 4.21). Thus, we in fact have ES := ESA

= ESB
. Hence,

Alice and Bob share a secret S determined by the elliptic curve ES = [a][b]E0 = [b][a]E0 :
y2 = x3 + Sx2 + x.

Some Possible Actions [a]
0 [l3] [l23] [l33] [l43] [l53] [l63] [l73] [l83]
0 [l25] [l45] [l65] [l85] [l5] [l35] [l55] [l75]

[l3l
2
5] [l43l

3
5] [l3l5] [l23l5] [l33l

2
5] [l3l

3
5] [l3l5] [l23l5] [l23l

3
5]

Alice’s Resulting Montgomery Coefficient A
0 29 31 53 11 48 6 28 30

Bo
b’

s
C

oe
ffi

ci
en

t
B

0 0 29 31 53 11 48 6 28 30
29 29 31 53 11 48 6 28 30 0
31 31 53 11 48 6 28 30 0 29
53 53 11 48 6 28 30 0 29 31
11 11 48 6 28 30 0 29 31 53
48 48 6 28 30 0 29 31 53 11
6 6 28 30 0 29 31 53 11 48
28 28 30 0 29 31 53 11 48 6
30 30 0 29 31 53 11 48 6 28

Table 5.1: Table of shared secrets with p = 59 = 4 · 3 · 5 − 1. One can use Figure 4.1 to verify
this table.



5.2. CSIDH 53

Let ℓ1 through ℓ11 denote the first 11 odd primes (thus the primes from 3 to 37). Then
p := −1+4

∏11
i=1 ℓi = 14841476269619. Define the starting curve E0 : y2 = x3+x over Fp.

We know that the Frobenius polynomial of E0 equals π2+p, thus we define K = Q(
√
−p)

and the order R = Z[
√
−p].

Evaluating∗

1 sage: p = 4*3*5*7*11*13*17*19*23*29*31*37-1
2 sage: E0 = EllipticCurve(GF(p), [1, 0])
3 sage: K.<pi> = NumberField(E0.frobenius_polynomial())
4 sage: K.order(pi).class_number()

gives that #Cl(R) = 7617567. Hence, the isogeny graph that we are working on will have
at most 7617567 nodes by Theorem 4.21 (in fact, it has exactly that many nodes).
Moving on with the encryption scheme, we must thus choose a positive integer m such
that 2m+ 1 ≥ 11

√
7617567 ≈ 4.223, we take m = 2.

Now, Alice generates a private key by choosing n = 11 random integers in the range
{−2,−1, 0, 1, 2}. Let us say that she generates the tuple (1, 0, 0, 0,−2, 2, 0, 0,−2, 1, 0).
She now has to compute [a]E0 = [le11 · · · le1111 ]E0. Note that in this case

a = l1 · l5
2 · l26 · l9

2 · l10 = (3, π − 1) · (13, π + 1)2 · (17, π − 1)2 · (29, π + 1)2 · (31, π − 1).

As an example, we will calculate [l1]E0 = [(3, π − 1)]E0.
From Section 4.5 we know that the action of the ideal l1 = (3, π− 1) is determined by an
isogeny ϕ : E → l1E satisfying kerϕ = {P ∈ E : [3]P = O} ∩ {P ∈ E : π(P ) − P = O}.
Now, if π(P )− P = O, then we will have that π(P ) = P , and we know that π only fixes
the points E(Fp) on the elliptic curve. Hence, kerϕ = E(Fp) ∩ {P ∈ E : [3]P = O}. All
the points in {P ∈ E : [3]P = O} will have to have an x-coordinate that is a root of
x4 + 2x2 + 9894317513079 ∈ Fp[x] which we get from evaluating

1 sage: E0.scalar_multiplication(3).kernel_polynomial()

in the same cell as before (we note that this particular computation is relatively slow,
for a faster approach see the code in Appendix A). This polynomial factors (into monic
irreducible polynomials) as (x+5672940366292)(x+9168535903327)(x2+6967967836332)
which we get from evaluating:

1 sage: x = polygen(GF(p))
2 sage: (x^4 + 2*x^2 + 9894317513079).factor()

Since we are only looking for points in E(Fp) that are a root of this polynomial, we thus
find that the x-coordinate of any point in kerϕ can only be (−5672940366292 mod p) or
(−9168535903327 mod p). We note that for every point in E(Fp), the y-coordinate also
has to be in Fp. We have that y2 = x3+x, so that we can determine whether our possible
x-coordinates result in y-coordinates in Fp. Using SageMath [2], we verify whether x3+x
is a square in Fp for each possible choice of x.

1 sage: GF(p)((-5672940366292)^3 + (-5672940366292)).is_square()
2 sage: GF(p)((-9168535903327)^3 + (-9168535903327)).is_square()

We get False and True, respectively. Therefore, the isogeny ϕ is given by the kernel
polynomial x+ 9168535903327.

1 sage: E0.isogeny(x + 9168535903327)

which has codomain E′ ∼= [l1]E : y2 = x3 + 13583108954376x + 8730919815582. The Fp-
isomorphism class can be represented by a Montgomery curve, which we compute using
the following code.
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1 sage: EllipticCurve(GF(p), [13583108954376, 8730919815582]).montgomery_model()

We find the Montgomery curve EA : y2 = x3 + 3475446217924x2 + x.
Now that we have seen the action of [l1] in more detail, we use the computer code from Ap-
pendix A to evaluate [a]E = [l1l25l

2
6l

2
9l10]E and put the resulting curve in Montgomery form

to get [a]E : y2 = x3+13973923058365x2+x. Thus, Alice will send A = 13973923058365
as her public key to Bob. If everything goes well, then with an example using large enough
primes (see remark below), no one can figure out that precisely the ideal class [a] was
applied to the starting curve to get this public key.
Bob also generates a private key and finds the Montgomery curve [l22l3l

2
5l6l7l

2
8]E

∼= EB :
y2 = x3 + 2115215140719x2 + x. And thus send his public key B = 2115215140719 to
Alice.
Alice receives Bob’s public key B = 2115215140719 and computes [a]EB : y2 = x3 +
12546545727400x2 + x, similarly, Bob computes [b]EA : y2 = x3 + 12546545727400x2 + x.
That is, Alice and Bob compute the shared secret S = 12546545727400.

∗Only a single SageMath shell should be opened as some commands we present rely on earlier defini-
tions.

Remark. Note that if Eve tries all shared secrets, i.e., she tries S = 0, S = 1, S = 2, . . . , S = p,
she will eventually find S = 12546545727400 and crack the encryption of Alice and Bob. CSIDH
recommends using at least a 512-bit prime p. To put things in perspective, in [1, Section 8.1]
they used

p = 5326738796327623094747867617954605554069371494832722337612
. . .

4466420540095600265765376268921130263812536246269416439494
. . .

44792662881241621373288942880288065659.

If Eve wants to check all shared secrets up to this prime p, using all existing computers of the
entire world, each of which could check a single shared secret per a nanosecond, then it would
still take her longer than the age of the universe.

5.3 Variant of CSIDH
In this final section we present another encryption scheme based on CSIDH. We did not find
any mentions of this encryption scheme, and therefore included it in this thesis. In this section
you can find proofs of various theorems regarding this variant of CSIDH. In the final subsection
of this chapter, we provide a method to break this encryption scheme, given an oracle that can
solve CSIDH.

Instead of denoting the isomorphism classes by their Montgomery representative we remove
this restriction entirely by considering two Fp-isomorphic elliptic curves as distinct. As a conse-
quence, we do not let ideal classes act on isomorphism classes of elliptic curves, but let the ideals
themselves act on elliptic curves without reducing them in their isomorphism class.

In this encryption scheme we denote elliptic curves (which we define over Fp with p > 3
prime) in short Weierstrass form as EA,B : y2 = x3 + Ax + B. Therefore, an elliptic curve
E′

A′,B′ : y2 = x3 + A′x + B′ is only considered to be equal to EA,B if and only if A′ = A and
B′ = B.

Initialisation. Find a prime of the form p = 4ℓ1 · ℓ2 · · · ℓn−1 with ℓi distinct odd primes
and n ≥ 1. Define the starting curve to be E1,0 : y2 = x3+x over Fp and define the order
Z[π] of Q(π), where π is a root of x2 + p.
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Private Key Generation. The private key is a 2n-tuple (e1, . . . , e2n) of integers repre-
senting exponents, each sampled randomly from a range† {0, . . . ,m} with m ∈ Z>0. Now,
using the 2n-tuple we define the ideal (and not the ideal class!) a = le11 le21 · · · le2n−1

n le2nn

where li := (ℓi, π − 1) and li := (ℓi, π + 1) are ideals of Z[π].
Now, Alice generates a private key and applies a to the starting curve E1,0 to obtain the
elliptic curve EA1,A2 = aE1,0 : y2 = x3 + A1x + A2 with A1, A2 ∈ Fp. Bob does the
same by generating a private key and applying its respective action to the starting curve,
obtaining a different elliptic curve EB1,B2

. At this point Alice and Bob send their values
of A1, A2 and B1, B2 to each other over a public channel.
Computing the Shared Secret. Now Alice computes ESA

:= aEB1,B2
and Bob com-

putes ESB
:= bEA1,A2 . We assume that both Alice and Bob use the same implementation

to compute isogenies, which preserves commutativity, so that a(bE) = b(aE) holds in-
stead of only a(bE) ∼= b(aE) as we have shown in Theorem 4.18. If this holds, we have
ES1,S2

:= ESA
= ESB

. Thus, Alice and Bob will share a secret S = (S1, S2) determined
by the curve ES1,S2

= abE1,0 = baE1,0 : y2 = x3 + S1x+ S2.
†The bound on m is not discussed here.

Remark. The question is whether the used implementation for computing isogenies preserves
commutativity. The implementation in Appendix A, using the “Kohel” algorithm from SageMath
to compute isogenies from monic kernel polynomials seems to preserve commutativity, however,
this fact is not proven. Proving it would require a more careful analysis of the Kohel formulae
[59, Section 2.4].

In short, the CSIDH algorithm represented nodes in the isogeny graph by a Montgomery
representative of the Fp-isomorphism class, from which commutativity of applying ideal classes
followed. In this variant, the nodes are not taken up to isomorphism but the operation is still
(or at least seems to be) commutative as we have fixed the algorithm to compute the codomain
of applying some ideal.

From Theorem 4.21 we can deduce that applying an ideal class of an ideal over some prime
p and then its conjugate results in a scalar multiplication as [a]([a]E) ∼= [(p)]E ∼= E. However,
applying the scalar multiplication a = (3) within this encryption scheme will give you an elliptic
curve that is still isomorphic to E, but is considered to be different from E. The resulting curve
can be computed using:

1 sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_kohel
2 sage: compute_codomain_kohel(E, E.scalar_multiplication(3).kernel_polynomial())

or can be evaluated using Theorem 5.6.

We evaluate the same example as in Section 5.2 with our new encryption scheme. If the
reader wants to try to do this computation for themselves they would need to remove all
4 occurrences of .montgomery_model() in Appendix A before running the code.
We again take p = 14841476269619 and let E1,0 : y2 = x3 + x be our starting curve
defined over F14841476269619.
Alice applies a = l1 · l25 · l26 · l29 · l10 to E1,0 to find EA1,A2

: y2 = x3 + 7807459824573x +

7370375928529. Bob applies b = l22 · l3 · l25 · l6 · l7 · l28 to E1,0 to find EB1,B2
: y2 = x3 +

6302721679322x+10110512071156. Alice and Bob exchange their public keys (A1, A2) =
(17807459824573, 7370375928529) and (B1, B2) = (6302721679322, 10110512071156).
Upon receiving Bob’s public keys Alice applies a to EB1,B2 to get ES1,S2 : y2 = x3 +
12542399067944x + 2321986802072. Similarly Bob applies b to EA1,A2

to get the same
elliptic curve ES1,S2

: y2 = x3 + 12542399067944x + 2321986802072. Thus, both Alice
and Bob compute the shared secret (S1, S2) = (12542399067944, 2321986802072).
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In this new encryption scheme isogeny graphs have a lot more nodes compared to CSIDH.
Assuming that p ≡ 11 (mod 12), Theorem 5.5 gives us that there are at most p−1

2 times as
many nodes in our isogeny graph compared to CSIDH as there are p−1

2 elliptic curves in each
Fp-isomorphism class. A lower bound for the amount of nodes in the isogeny graph of our
encryption scheme is given in Theorem 5.8. For p = 59, instead of having just 9 different nodes
in the isogeny graph from Figure 4.1 we expect to have exactly lcm(29, 29) · 9 = 29 · 9 = 261
nodes from Theorem 5.8.

5.3.1 Proofs Regarding Our Variant
We continue this section with some proofs regarding our encryption scheme.

Definition 5.1. A residue class (x mod p) ∈ F∗
p is called a quartic residue if there is some a ∈ F∗

p

such that a4 ≡ x (mod p). For sextic residues the relation a6 ≡ x (mod p) must hold for some
a ∈ F∗

p, for quadratic residues a2 ≡ x (mod p) must hold for some a ∈ F∗
p, and for cubic residues

a3 ≡ x (mod p) must hold for some a ∈ F∗
p.

Theorem 5.2 (Quadratic Reciprocity). Let p and q be odd positive integers with gcd(p, q) = 1,
and let

(
p
q

)
denote the Jacobi symbol (see [60, Definition 1.3] and [61, p. 1]). We have that(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. See [61, pp. 5-6] and [60, Section 2].

Theorem 5.3 (Fermat’s little theorem). For x ∈ Fp we have that xp = x. Equivalently, for
(x mod p) ∈ Fp, we have that xp ≡ x (mod p).

Proof. See for example [62].

Lemma 5.4. Let p ≡ 11 (mod 12) be a prime number. There are p−1
2 quadratic residues in F∗

p.
These residues are also quartic and sextic residues.

Proof. This proof is split into two parts. The first part shows that if p ≡ 3 (mod 4), then there
are as many quadratic residues as there are quartic residues. The other part shows that if p ≡ 2
(mod 3), then there are p− 1 cubic residues in F∗

p. We know that p ≡ 11 (mod 12) satisfies both
these conditions and that there are p−1

2 quadratic residues in F∗
p as shown in [63, Theorem 3.1].

Therefore, using these parts gives us that there are p−1
2 quartic residues in F∗

p and p−1
2 sextic

residues in F∗
p (as a sixth power is the square of a cube), the fact that these residues are the same

can be seen from the fact that quartic and sextic residues must also be quadratic residues.
First, if p ≡ 3 (mod 4), we know that (−1 mod p) is not a quadratic residue from the law of

quadratic reciprocity (or directly from [60, Theorem 1.6]). Therefore, for any residue class x ∈ F∗
p,

we either have that (x mod p) is a quadratic residue or that (−x mod p) is a quadratic residue.
Suppose (r mod p) is a quadratic residue (remember that there are p−1

2 quadratic residues), then
there exists an (a mod p) ∈ F∗

p such that r ≡ a2 (mod p). Now, one of (a mod p) and (−a mod p)
is a quadratic residue, so there exists some (b mod p) ∈ F∗

p such that a ≡ b2 (mod p) or −a ≡ b2

(mod p). But then r ≡ a2 ≡ (±a)2 ≡ b4 (mod p), so (r mod p) is a quartic residue. Each
quadratic residue is thus also a quartic residue, and as there cannot be more quartic residues
than quadratic residues, this part is proven.

Every p ≡ 2 (mod 3) is of the form 3k+2 with k ∈ Z. Let (x mod p) ∈ F∗
p be arbitrary. Then

by Fermat’s little theorem (Theorem 5.3) we have x2p−1 ≡ xpxp−1 ≡ x (mod p). Substituting
3k + 2 for p then gives that x6k+3 ≡ (x2k+1)3 ≡ x (mod p). Therefore, (x mod p) is a cubic
residue as a ∈ (x2k+1 mod p) satisfies a3 ≡ x (mod p). As our residue class (x mod p) ∈ F∗

p was
arbitrary, there are p− 1 cubic residues in F∗

p, proving the theorem.
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Theorem 5.5. Each Fp-isomorphism class of elliptic curves defined over Fp contains p − 1
representatives of the form E : y2 = x3 +Ax+B with A,B ∈ Fp. Moreover, if p ≡ 11 (mod 12),
there are p−1

2 representatives of that form in each Fp-isomorphism class.

Proof. By Theorem 4.7 we know that two elliptic curves over Fp are isomorphic over Fp if
and only if the j-invariants of both curves are equal. Naturally, if two elliptic curves are Fp-
isomorphic, they must also be isomorphic over Fp and thus have the same j-invariant (Section
4.2). If E′ : y2 = x3 + A′x + B′ is an elliptic curve over Fp, then we have j(E) = j(E′) if and
only if

4A3

4A3 + 27B2
=

4A′3

4A′3 + 27B′2 ,

which is equivalent to
A3(4A′3 + 27B′2) = A′3(4A3 + 27B2),

as for elliptic curves we have 4A3 + 27B2 6= (0 mod p). Distributing the terms gives that this
is in turn equivalent to A3B′2 = B2A′3. In other words, we are counting pairs (A′, B′) ∈ (F∗

p)
2

such that A3B′2 = B2A′3.
If A = (0 mod p) and B = (0 mod p), then E is not an elliptic curve. Now, if only A =

(0 mod p), then A′ will have to be (0 mod p) as well, giving that B′ ∈ F∗
p is arbitrary, implying

that there exist p− 1 elliptic curves E′ isomorphic over Fp to this choice of E. Similarly if only
B = (0 mod p), then B′ has to be (0 mod p), and the equation gives an elliptic curve E′ for
arbitrary A′ ∈ F∗

p, which has p− 1 elements.
For the remaining case where A 6= (0 mod p) and B 6= (0 mod p), we note that A3B−2 ∈ F∗

p.
If A′ = (0 mod p) or B′ = (0 mod p), the equation will not hold, or E′ will not be an elliptic
curve, so we can safely assume that A′, B′ ∈ F∗

p. We have j(E) = j(E′) if A3B−2 = A′3B′−2, or,
upon defining C ′ = A′B′−1 ∈ F∗

p, if A3B−2 = A′C ′2. Now let α := A3B−2 ∈ F∗
p be arbitrary, in

order to prove that there are p− 1 elliptic curves E′ isomorphic over Fp to E we will show that
there are p − 1 choices for (A′, C ′) ∈ (F∗

p)
2 such that α = A′C ′2. To this end, let C ′ ∈ F∗

p be
arbitrary, and compute β := αC ′−2 ∈ F∗

p. We need to have β = A′, which implies that there is
only one valid choice of A′ corresponding to this value of C ′. Note that C ′ ∈ F∗

p was arbitrary,
implying that there are p − 1 choices for C ′ and therefore also p − 1 elliptic curves E′ that are
Fp-isomorphic to E.

We have thus shown that there are p − 1 elliptic curves in each Fp-isomorphism class. Two
elliptic curves E and E′ (in short Weierstrass form) are Fp-isomorphic if E′ is of the form
y2 = x3 + u4Ax+ u6B for some u ∈ F∗

p, as stated in Theorem 4.8.
For the case that only A = (0 mod p), we found that A′ = (0 mod p) and B′ ∈ F∗

p is arbitrary.
However, since we require the elliptic curves to have an isomorphism over Fp, B′ must be of the
form u6B. By Lemma 5.4 there are p−1

2 distinct sextic residues modulo p. Therefore, there are
precisely p−1

2 elliptic curves E′ that are Fp-isomorphic to E. Similarly, for the case that only
B = (0 mod p), we have shown that B′ = (0 mod p) holds and that A′ ∈ F∗

p was arbitrary. Now
A′ has to satisfy A′ = u4A, so that Lemma 5.4 implies that there are p−1

2 elliptic curves E′ that
are Fp-isomorphic to E.

Following the notation of the last case, we see that A′ = u4A must hold and that B′ = u6B
must hold. But in that case C ′ = A′B′−1 = u−2AB−1 ∈ F∗

p also holds. This implies that there
are only p−1

2 valid choices for C ′. Each choice of C ′ then gives only one value of A′, showing
once more that there are p−1

2 elliptic curves E′ that are Fp-isomorphic to E.

Theorem 5.6. The action of ideals of the form (n) for odd integers n using Kohel’s algorithm
[59, Section 2.4] will result in mapping E : y2 = x3 +Ax+B to (n)E : y2 = x3 + n4Ax+ n6B.

Proof. Using [48, Theorem 9.8.7] or [59, p. 14] we see that the (monic) kernel polynomial of this
map equals the division polynomial ψn [64, Section 6.5] [48, Definition 9.8.5]. We define the
division polynomials fn ∈ Z[A,B][x] for positive integers n as in [65, Equation 1]. These values
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for fn can be derived from the usual values for ψn by fn = ψn for odd n and fn = ψn/y for even
n. Using [64, Lemma 6.21] for the first coefficient and the main lemma in [65] for the others, we
find a relation for the first few coefficients of fn for odd n:

fn = nx
n2−1

2 +
A

60
n(n2 − 1)(n2 + 6)x

n2−1
2 −2+(

− 1

42
n(n2 − 1)(n2 − 3) +

1

210
n3(n2 − 1)(n2 + 6)

)
Bx

n2−1
2 −3 +O

(
x(n

2−1)/2−4
)
.

To obtain a monic polynomial, we divide fn by n to obtain (for odd n)

ψn = x
n2−1

2 + s2x
n2−1

2 − s3x
n2−1

2 +O
(
x(n

2−1)/2−4
)
, where

s2 =
1

60
(n2 − 1)(n2 + 6)A, s3 =

n2 − 1

210

(
5(n2 − 3)− n2(n2 + 6)

)
B.

Now, using the relations from Kohel’s algorithm [59, Section 2.4] we find s1 = 0, t = −12s2 +
(n2 − 1)A, and w = 30s3 + 2(n2 − 1)B. Thus, upon defining E′ = (n)E : y2 = x3 +A′x+B′ we
find that (for odd n)

A′ = A− 5t = A+ 60s2 − 5(n2 − 1)A = A+ (n2 − 1)(n2 + 1)A = n4A,

B′ = B − 7w = B − 210s3 − 14(n2 − 1)B = B + (n2 − 1)B(−5(n2 − 3) + n2(n2 + 6)− 14)

= B + (n2 − 1)B(n4 + n2 + 1) = n6B.

We have thus proved the theorem. Note that E and (n)E are isomorphic by Theorem 4.8, thus
the action of the ideal (n) (for odd n), is indeed an endomorphism.

For the remainder of this section, we let ord(n mod p) denote the order of (n mod p) ∈ F∗
p,

thus, ord(n mod p) equals the first positive integer k such that nk ≡ 1 (mod p).

Lemma 5.7. Let p ≡ 11 (mod 12) be a prime number, then for any odd divisor q | p + 1 we
have ord(q mod p) = ord(q4 mod p) = ord(q6 mod p).

Proof. Let k = ord(q mod p), in other words, let k ∈ Z>0 be the first number such that qk ≡
1 (mod p). By Euler’s theorem we have that k must divide φ(p) = p − 1, where φ is the
Euler totient function. Since p ≡ 2 (mod 3) we know that 3 ∤ φ(p) and thus 3 ∤ k. Similarly,
p ≡ −1 (mod 4), thus 4 ∤ φ(p) and thus 4 ∤ k. Now, if q = 1, we have that ord(q mod p) =
ord(q4 mod p) = ord(q6 mod p), so we can safely assume that q ≥ 3. Since q | p+1 we have that(

p
q

)
=
(

−1
q

)
= (−1)

q−1
2 using Theorem 5.2, where the second equality comes from [61, p. 4].

As p ≡ 3 (mod 4), this implies that
(

q
p

)
= (−1)

p−1
2 = 1. Therefore, q is a quadratic residue

modulo p, i.e., q p−1
2 ≡ 1 (mod p). Thus, k = ord(q mod p) | p−1

2 , which implies that 2 ∤ k as
p ≡ 3 (mod 4). Since we have ord(q4 mod p), ord(q6 mod p) | ord(q mod p) = k, but 2, 3 ∤ k we
must have ord(q mod p) = ord(q4 mod p) = ord(q6 mod p).

Theorem 5.8. Let p be a prime of the form p = 4ℓ0ℓ1ℓ2 · · · ℓn−1 with ℓ0 = 3 and ℓi distinct odd
primes for 0 ≤ i ≤ n with n ≥ 0. Furthermore, define the ideals li := (ℓi, π − 1), li := (ℓi, π − 1).
Let S be the set of elliptic curves that can be reached from E1,0 by repeatedly applying (using
Kohel’s algorithm) the ideals li or li for 0 ≤ i ≤ n. Then,

3 · lcm(ord(ℓ0 mod p), . . . , ord(ℓn mod p)) ·#Cl(Q(π)) ≤ #S ≤ 3

2
(p− 1)#Cl(Q(π))

Proof. The ideal classes of the ideals li and li give us at least one representative of each Fp-
isomorphism class of elliptic curves over Fp. As the CSIDH encryption scheme works on isogeny
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graphs with 3#Cl(Q(π)) nodes [66, Section 3], we know that our encryption scheme has at
least as many nodes as the CSIDH encryption scheme. Namely, at least one node for each Fp-
isomorphism class. As we cannot perform an action that lets us enter an isomorphism class
that we could not enter using CSIDH, this encryption scheme contains the same amount of
isomorphism classes. Now, combining the fact that p ≡ 11 (mod 12) with Theorem 5.5 gives us
the upper bound of 3

2 (p− 1)#Cl(Q(π)) elements.
Suppose that the representative of an isomorphism class is E : y2 = x3 + Ax + B with

A,B ∈ Fp. Then applying the ideal lili = (ℓi) maps E to (ℓi)E : y2 = x3 + ℓ4iAx + ℓ6iB from
Theorem 5.6. With (ℓi)E being in the same Fp-isomorphism class as E due to Theorem 4.8.

From Lemma 5.7 we deduce that ord(ℓi mod p) = ord(ℓ4i mod p) = ord(ℓ6i mod p) for any
0 ≤ i ≤ n. Thus, the first positive integer k that satisfies (ℓi)

kE = E, equals ord(ℓi mod p).
Iterating over all possible ℓi yields that there are at least lcm(ord(ℓ0 mod p), . . . , ord(ℓn mod

p)) elliptic curves we can “reach” from a representative E in our Fp-isomorphism class of elliptic
curves. As there are 3#Cl(Q(π)) such isomorphism classes the theorem follows.

For p = 6563 = 4 · 3 · 547 − 1 we have #Cl(Q(π)) = 23. Therefore, Theorem 5.8 gives
that the number of elliptic curves we can reach from our starting curve E1,0 is at least
3 · lcm(193, 193) · 23 = 13317 and at most 226389. We verified that the correct number is
13317, which equals the lower bound.
In fact, 6563 is one of the two primes of the form in Theorem 5.8 under 104 such that
lcm(ord(ℓ0 mod p), . . . , ord(ℓn mod p)) 6= p−1

2 . The other one is 5531.

5.3.2 Isogeny Graphs Using Our Variant
In Figure 5.2 we visualised the isogeny graph using our encryption method on the left-hand side,
and the CSIDH encryption method on the right-hand side. The isogeny graph generated by our
method has 21 nodes, compared to the isogeny graph generated by CSIDH of only 3 nodes. We
note that Theorem 5.8 does not apply as we have p = 43 and 43 6≡ 11 (mod 12).

As an example, we look at applying the ideal p11 := (11, π−1) and the ideal p11 := (11, π+1)
to a node in both isogeny graphs (where we take π to be a root of x2+43 and we define the order
Z[π] of Q(π)). In the isogeny graph generated by CSIDH, we see that as the ideal class [(11)]
is trivial, therefore applying [p11] and then [p11] will result in the same Fp-isomorphism class
of elliptic curves. In the other isogeny graph, we will look at applying (11) to the node E22,25.
Using the graph one can verify that (11)E22,25 = p11p11E22,25 = p11E39,7 = E32,14. Similarly,
(11)E22,25 = p11p11E22,25 = p11E21,0 = E32,14, ensuring commutativity. This result can also be
obtained using Theorem 5.6 as 32 ≡ 114 · 22 (mod 43) and 14 ≡ 116 · 25 (mod 43).

5.3.3 Strength of Our Encryption Scheme
Let p be a prime and define the order Z[π] of Q(π) where π is a root of x2+p. In this subsection,
we assume that there exists an oracle that can solve the CSIDH encryption scheme to a level
that given a public key A and a starting curve E0, the oracle can find an ideal a of Z[π] such
that [a]E0

∼= EA. We will provide an unproven method for the oracle to break our variant of
CSIDH as well.

Given is Alice’s public key A1, A2, determined by evaluating aE1,0, where a is the ideal of
Z[π] corresponding to the secret key of Alice. Suppose that a CSIDH oracle finds an ideal c
such that [c]E1,0

∼= MA where MA denotes the Montgomery curve in the Fp-isomorphism class
of EA1,A2 . Now, we can compute the curve EC1,C2 := cE1,0 (using the same algorithm that Alice
and Bob use) which is Fp-isomorphic to EA1,A2 . Afterwards, we can find a rational map ψ equal
to the Fp-isomorphism from EC1,C2

to EA1,A2
(using Theorem 4.8). We write ϕc for the isogeny

determined by the ideal c. We thus have that (ψ ◦ ϕc)E1,0 = EA1,A2
= aE1,0. Now, given Bob’s

public key B1, B2, we can evaluate (ψ ◦ ϕc)EB1,B2
to find the shared secret aEB1,B2

.
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Figure 5.2: Isogeny graphs with the same starting curve E1,0 = E0 : y2 = x3 + x defined over
F43. On the left-hand side nodes in the same F43-isomorphism class are not contracted, giving
an isogeny graph generated by the action of the ideals p11 := (11, π − 1) and p11 := (11, π + 1)
of the order Z[π] of the number field Q(π) where π is a root of x2 + 43 on the elliptic curves.
On the right-hand side, nodes in the same F43-isomorphism class are contracted and are denoted
by their Montgomery representative, the isogeny graph is generated by the action of the ideal
classes [p11] and [p11].

Let p = 59 = 4 · 3 · 5− 1, Theorem 5.8 then gives the lower bound of 261 nodes and the
upper bound of 261 nodes. We will thus be working on an isogeny graph with exactly 261

nodes. Alice generates her private key, and reaches a = l23l
3
3l5l

3
5. She applies her action to

the starting curve E1,0 (using Kohel’s algorithm) to get the elliptic curve E25,45 : y2 =
x3 +25x+45. Suppose that there exists a method to break the CSIDH algorithm. Then,
after finding the Montgomery representative of E25,45 given by E28 : y2 = x3 + 28x2 + x,
the method can find an ideal c such that [c]E1,0 = E28. An example of such an ideal class
can be found in Table 5.1, which yields c = l23l5.
Now, applying the ideal c to E1,0 gives the curve cE1,0 = E35,20 : y2 = x3 + 35x+ 20. To
find an Fp-isomorphism from E35,20 to E25,45, we first find the residue classes a, b of F59

such that (35 mod p)a = (25 mod p) and (20 mod p)b = (45 mod p). We calculate these
to be (26 mod p) and (17 mod p), respectively. Although we can calculate the actual
Fp-isomorphism, these residue classes are enough.
Now, Alice receives Bob’s public key E52,30 : y2 = x3 + 52x + 30 and computes the
shared secret aE52,30 = E48,14 : y2 = x3 + 48x + 14. The oracle computes cE52,30 =
E20,39 : y2 = x3 + 20x + 39. Using the residue classes (26 mod p) and (17 mod p), we
can compute 20 · 26 ≡ 48 (mod p) and 39 · 17 ≡ 14 (mod p), precisely the coefficients of
E48,14 = aE52,30, the shared secret.



Appendix A

Computer Code

This is the SageMath code [2] for computing the example in Section 5.2. It can be adapted
to evaluate the action of other ideals on elliptic curves. The code is also available on https:
//github.com/jorisperrenet/MasterThesis.

1 from sage.all import *
2 from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_kohel
3

4

5 def apply_ideal(E, n, v=-1):
6 """Returns (n, pi-1)E, (n)E, or (n, pi+1)E depending on v=-1,0,+1
7

8 Arguments:
9 - E, an elliptic curve of the form y^2 = f(x) over F_p for a prime p

10 satisfying p>3 and p=3 mod 8.
11 - n, an odd prime dividing p+1.
12 - v, an integer between -1 and 1, specifying what ideal to apply to
13 the elliptic curve.
14

15 Output:
16 - E', an elliptic curve in the F_p-isomorphism class of
17 (n, pi-1)E, (n)E, or (n, pi+1)E, depending on `v`.
18 The resulting elliptic curve is found using Kohel's algorithm.
19 """
20 assert E.a1() == E.a3() == 0
21 assert is_prime(n) and n & 1 and (p+1) % n == 0
22 assert -1 <= v <= 1 and int(v) == v
23

24 # Do the case v=0 separately, as this is much faster.
25 if v == 0:
26 Esw = E.short_weierstrass_model()
27 return EllipticCurve([0, 0, 0, n^4 * Esw.a4(), n^6 * Esw.a6()])
28

29 # We find the function f(x) such that E: y^2 = f(x).
30 f = E.hyperelliptic_polynomials()[0]
31

32 # We aspire to find a generator Q of the n-torsion points on the elliptic curve, i.e.,
33 # a generator of the set {P in E: [n]P = O}
34 if v == 1:
35 # We want to apply the ideal (n, pi+1) to E.
36 # ker phi = {P in E: [n]P = O} �{P in E: pi(P)+P = O}
37 # If pi(P) + P = O, then pi(P) = -P, and if P=(x,y), then x^p=x and y^p=-y is required.
38 # So x in F_p and y^(p-1) = -1, so P in E(F_{p^2}).
39 # We go through random points on the curve an check whether they are generators of the
40 # n-torsion points of E(F_{p^2}).
41 F = GF(p)
42 EF2 = E.base_extend(GF(p^2))
43 while True:
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44 # We still have that x in F_p.
45 x_coor = F.random_element()
46 # Check whether this point satisfies y^(p-1)=-1, so that since y^2=f(x) we find that
47 # f(x)^((p-1)/2) = -1, giving that f(x) is not a quadratic residue.
48 if not f(x_coor).is_square():
49 # This point is in E(F_{p^2}), find the corresponding coordinates.
50 G = EF2.lift_x(x_coor)
51 # Assume that G is a generator of the n-torsion points of E(F_{p^2}), so that
52 # G has order equal to p+1, then we find that [n]*[(p+1)/n]*G = O as
53 # n divides p+1, therefore [(p+1)/n]*G has order n (or a divisor of n).
54 Q = ((p+1)//n)*G
55 # The only point of order a divisor of n is the point at infinity, check that
56 # we did not find this point.
57 if Q != EF2.point(0):
58 break
59 elif v == -1:
60 # The commented code
61 # while True:
62 # x_coor = GF(p).random_element()
63 # if f(x_coor).is_square():
64 # G = E.lift_x(x_coor)
65 # Q = ((p+1)//n)*G
66 # if Q != E.point(0):
67 # break
68 # is actually the same as the following built-in code.
69 G = E.gens()[0]
70 Q = ((p+1)//n)*G
71

72 # The multiples [k]*Q = [k*(p+1)/n]*G still satisfy [n]*[k*(p+1)/n]*G = O, such that
73 # each of [k]*Q is an n-torsion point, these are in fact all the n-torsion points that
74 # we need to check.
75 # We only need to know the distinct x-coordinates of [k]*Q.
76 # We will repetitively add Q to itself, stopping at [n]*Q (exclusive).
77 # Since [n-1]*Q = [-1]*Q = -Q has the same x-coordinate as [1]Q = Q and -Q has the same
78 # x-coordinate as Q, we can even stop our search at [n//2]*Q (inclusive).
79 P = Q
80 xs = {Q.x()}
81 for _ in range(n//2-1):
82 P += Q
83 xs.add(P.x())
84

85 # We are ready to compute the monic kernel polynomial of the isogeny phi, remember that
86 # ker phi = {P in E: [n]P = O} �{P in E: pi(P) \pm P = O}
87 # and `xs` are the x-coordinates of all points in {P in E: [n]P = O}.
88 # A monic kernel polynomial of the resulting isogeny will be the product
89 # of (x-P_x), where P_x is the x-coordinate of the point in the kernel.
90 x = polygen(GF(p))
91 if v == -1:
92 # If (pi-1)(P) = O, then pi(P) = P, so that if P=(x,y) we require that x^p=x and y^p=y.
93 # This gives that both x in F_p and y in F_p. Then, we need y^(p-1)=1. But, y^2=f(x),
94 # so that the equality becomes y^(p-1)=f(x)^((p-1)/2)=1, implying that we need f(x)
95 # to be a quadratic residue, i.e., a square in F_p.
96 kernel_pol = prod(x - px for px in xs if f(px).is_square())
97 elif v == 1:
98 # If (pi+1)(P) = O, then pi(P) = -P, so that if P=(x,y) we require that x^p=x and y^p=-y.
99 # We again get that x in F_p, but require that y^(p-1)=f(x)^((p-1)/2)=-1, implying that

100 # f(x) may not be a square in F_p.
101 # First, map each x-coordinate in F_{p^2} to a point in F_p (we already know that these
102 # are in F_p so that we can apply this mapping).
103 F = GF(p)
104 xs = [F(px) for px in xs]
105 kernel_pol = prod(x - px for px in xs if not f(px).is_square())
106

107 # Specifying the algorithm that SageMath uses to compute the codomain of the isogeny
108 # corresponding to the kernel speeds up the calculation significantly over using
109 # `E.isogeny`, I presume that this is because SageMath does not need to compute the



63

110 # isogeny in this case.
111 return compute_codomain_kohel(E, kernel_pol)
112

113 def apply_ideals(E, ps, mults):
114 """Applies the ideal (ps[i], pi-1)**mults[i] to E for all i
115 Note: if mults[i] < 0, then we apply (ps[i], pi+1)**(-mults[i])."""
116 e = E
117 for n, mult in zip(ps, mults):
118 if mult < 0:
119 for _ in range(-mult):
120 e = apply_ideal(e, n, 1)
121 else:
122 for _ in range(mult):
123 e = apply_ideal(e, n, -1)
124 return e
125

126

127

128 ### Define your prime `p` here as the product of small primes in `ps`
129 ps = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
130 p = 4*prod(ps)-1
131

132 # Make sure that p>3 is prime and p = 3 (mod 8).
133 # Then, make sure that p is -1+4*[the product of distinct odd primes]
134 assert is_prime(p)
135 assert p % 8 == 3 and p > 3
136 assert factor((p+1)/4).radical_value() == (p+1)/4
137

138 # Create the starting curve, E0
139 E0 = EllipticCurve(GF(p), [1, 0])
140

141 # Display some information
142 print()
143 print(f'p = {p}, with starting curve {str(E0)[26:-27-len(str(p))]}')
144 K.<pi> = NumberField(E0.frobenius_polynomial())
145 print(f'The number of nodes in the isogeny graph is {K.order(pi).class_number()}')
146 print()
147

148 ### Applying the ideals to the elliptic curves according to the example.
149 print()
150 print("Alice's resulting curve after applying her private key is")
151 E_A = apply_ideals(E0, (3, 13, 17, 29, 31), (1, -2, 2, -2, 1)).montgomery_model()
152 print(E_A)
153

154 print()
155 print("Bob's resulting curve after applying his private key is")
156 E_B = apply_ideals(E0, (5, 7, 13, 17, 19, 23), (2, 1, -2, 1, -1, 2)).montgomery_model()
157 print(E_B)
158

159 print()
160 print()
161 print("Alice applies her private key to E_B and gets")
162 print(apply_ideals(E_B, (3, 13, 17, 29, 31), (1, -2, 2, -2, 1)).montgomery_model())
163 print()
164 print("Bob applies his private key to E_A and gets")
165 print(apply_ideals(E_A, (5, 7, 13, 17, 19, 23), (2, 1, -2, 1, -1, 2)).montgomery_model())
166 print()
167 print("They thus get the same curve E_S.")
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